Hardness Results for Laplacians of Simplicial Complexes via Sparse-Linear Equation Complete Gadgets

Abstract

We study linear equations in combinatorial Laplacians of k-dimensional simplicial complexes (k-complexes), a natural generalization of graph Laplacians. Combinatorial Laplacians play a crucial role in homology and are a central tool in topology. Beyond this, they have various applications in data analysis and physical modeling problems. It is known that nearly-linear time solvers exist for graph Laplacians. However, nearly-linear time solvers for combinatorial Laplacians are only known for restricted classes of complexes.

This paper shows that linear equations in combinatorial Laplacians of 2-complexes are as hard to solve as general linear equations. More precisely, for any constant c ≥ 1, if we can solve linear equations in combinatorial Laplacians of 2-complexes up to high accuracy in time O˜((# of nonzero coefficients)^c), then we can solve general linear equations with polynomially bounded integer coefficients and condition numbers up to high accuracy in time O˜((# of nonzero coefficients)^c). We prove this by a nearly-linear time reduction from general linear equations to combinatorial Laplacians of 2-complexes. Our reduction preserves the sparsity of the problem instances up to poly-logarithmic factors.

Publication
In 49th International Colloquium on Automata, Languages, and Programming
Ming Ding
Ming Ding
PhD Student

My research is in general faster optimization algorithms, and in particular focused on the fine-grained complexity and algorithms for Linear Equations and Linear Programs.