
DISS. ETH NO. 31123

Fine-Grained Complexity and Algorithms for
Structured Linear Equations and Linear Programs

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES
(Dr. sc. ETH Zurich)

presented by

Ming Ding

born on 16.02.1995

accepted on the recommendation of

Prof. Dr. Rasmus Kyng, examiner
Prof. Dr. David Steurer, co-examiner
Prof. Dr. Peng Zhang, co-examiner

2025

2

Abstract

Linear Equations (LEs) and Linear Programs (LPs) are fundamental tools in scientific
research and practical applications, with widespread use in optimization, engineering, and
data analysis. Many real-world problems exhibit specific structural properties, enabling
structured problems to be solved significantly faster than general-purpose solvers for LEs
and LPs. This thesis explores several structured LEs and LPs from both complexity and
algorithmic perspectives.

For LPs, we investigate the computational complexity of the two-commodity flow
(2CF) problem, a natural generalization of the well-studied single-commodity flow (i.e.,
maximum flow) problem. Both 2CF and maximum flow problems can be formulated
as LPs, each defining a distinct family of structured LPs. Given the success of efficient
algorithms for maximum flow and the structural similarities between the two problems, it
was widely conjectured that 2CF could also be solved more efficiently than general LPs.
Contrary to this belief, we prove that solving 2CF — either exactly or approximately to
high accuracy — is as computationally hard as solving general LPs. We prove this by
giving a nearly-linear time reduction that encodes any LP as a 2CF problem on a sparse
directed graph with only a polylogarithmic blow-up in problem size. Furthermore, careful
error analysis guarantees that any approximate 2CF solution can be mapped back into
an approximate LP solution with only a polynomial increase in error.

For LEs, we focus on systems of linear equations whose coefficient matrices are
combinatorial Laplacians, a class of generalized graph Laplacians that arise in higher-
dimensional problems on simplicial complexes. Combinatorial Laplacians play a crucial
role in homology (a central tool in topology), and have various applications in data anal-
ysis and physical modeling problems. While nearly-linear time solvers are known for
graph Laplacians, efficient solvers for combinatorial Laplacians are only known for re-
stricted classes of simplicial complexes. By constructing a nearly-linear time reduction
from general LEs to combinatorial Laplacians of 2-complexes, we show that solving linear
equations in combinatorial Laplacians is computationally as hard as solving general LEs.
Notably, our reduction preserves problem sparsity up to polylogarithmic factors.

Finally on the algorithmic side, despite our hardness results for combinatorial Lapla-
cians, we demonstrate that imposing geometric structure on simplicial complexes can lead
to substantial computational improvements. In particular, we develop sub-quadratic time
algorithms for approximately solving LEs in 1-Laplacians (i.e., 1-dimensional combina-
torial Laplacians) on well-shaped simplicial complexes up to high accuracy.

3

4

Zusammenfassung

Lineare Gleichungen (LEs) und Lineare Programme (LPs) sind grundlegende Werkzeuge
in der wissenschaftlichen Forschung und in praktischen Anwendungen. Sie finden breite
Anwendung in den Bereichen Optimierung, Ingenieurwesen und Datenanalyse. Viele reale
Probleme weisen spezifische strukturelle Eigenschaften auf, wodurch sich strukturierte
Probleme deutlich schneller lösen lassen als mit allgemeinen Lösungsverfahren für LEs
und LPs. Diese Arbeit untersucht verschiedene strukturierte LEs und LPs sowohl aus
komplexitätstheoretischer als auch aus algorithmischer Perspektive.

Für LPs analysieren wir die rechnerische Komplexität des Zwei-Warenfluss-Problems
(2CF), einer natürlichen Verallgemeinerung des gut erforschten Ein-Warenfluss-Problems
(d.h. Maximalflussproblem). Sowohl das 2CF- als auch das Maximum-Flow-Problem
lassen sich als LPs formulieren, wobei jedes eine eigene Familie von strukturierten LPs
definiert. Aufgrund des Erfolgs effizienter Algorithmen für das Maximalflussproblem und
der strukturellen Ähnlichkeit beider Probleme wurde häufig vermutet, dass auch 2CF ef-
fizienter lösbar sein könnte als allgemeine LPs. Im Gegensatz zu dieser Annahme zeigen
wir, dass die exakte oder hochgenaue approximative Lösung des 2CF-Problems genauso
schwierig ist wie die Lösung allgemeiner LPs. Dies beweisen wir durch eine Reduktion
in nahezu linearer Zeit, die jedes LP auf ein 2CF-Problem auf einem dünnbesetzten
gerichteten Graphen abbildet, wobei die Problemgrösse lediglich um einen polylogarith-
mischen Faktor wächst. Eine sorgfältige Fehleranalyse stellt zudem sicher, dass jede
approximative 2CF-Lösung in eine approximative LP-Lösung umgewandelt werden kann,
wobei sich der Fehler nur polynomial vergrössert.

Bei LEs konzentrieren wir uns auf lineare Gleichungssysteme, deren Koeffizienten-
matrizen kombinatorische Laplace-Operatoren sind, eine Klasse verallgemeinerter Graph-
Laplace-Operatoren, welche bei höherdimensionalen Problemen auf Simplizialkomplexen
auftreten. Kombinatorische Laplace-Operatoren spielen eine zentrale Rolle in der Ho-
mologie (einem wesentlichen Werkzeug der Topologie) und besitzen vielfältige Anwendun-
gen in der Datenanalyse sowie in der physikalischen Modellierung. Während für Graph-
Laplace-Operatoren nahezu lineare Lösungsverfahren bekannt sind, existieren für kom-
binatorische Laplace-Operatoren effiziente Algorithmen bislang nur für eingeschränkte
Klassen von Simplizialkomplexe. Mittels einer nahezu linearen Reduktion von allge-
meinen linearen Gleichungssystemen auf kombinatorische Laplace-Gleichungssysteme auf
2-Komplexen zeigen wir, dass das Lösen linearer Gleichungen mit kombinatorischen
Laplace-Operatoren ebenso komplex ist wie das Lösen allgemeiner linearer Gleichungssys-
teme. Bemerkenswerterweise erhält unsere Reduktion dabei die Problem-Sparsität bis auf
polylogarithmische Faktoren.

Abschliessend demonstrieren wir auf algorithmischer Ebene, dass trotz unserer
Härteresultate für kombinatorische Laplace-Operatoren eine geometrische Strukturierung
der Simplizialkomplexe erhebliche algorithmische Verbesserungen ermöglicht. Insbeson-
dere entwickeln wir subquadratische Algorithmen zur hochgenauen Approximation lin-

5

6

earer Gleichungssysteme mit 1-Laplace-Operatoren (also eindimensionalen kombina-
torischen Laplace-Operatoren) auf geometrisch wohldefinierten Simplizialkomplexe.

Acknowledgements

I would like to express my deepest gratitude to my Ph.D. supervisor, Rasmus Kyng. I
still vividly remember our enjoyable first interview, where we discussed the graph sparsi-
fication paper—it was my first exposure to the world of theoretical computer science. I
was so excited to join your research group and start this journey.

I am especially grateful for your remarkable generosity with your time, as well as
your patience in coaching me and solving problems together. I have always been amazed
by your exceptional problem-solving skills—how you develop deep intuition and break
down complex problems into tractable pieces. Your optimism and persistence, even when
things seemed impossible, have been truly inspiring. Your guidance has not only shaped
the research in this thesis but has also deeply influenced the way I approach challenges
in life. Beyond that, I also sincerely appreciate the freedom you gave me to explore my
own research interests and career aspirations.

I would also like to extend my sincere thanks to my co-examiners, David Steurer
and Peng Zhang, for kindly agreeing to join my doctoral examination committee and for
taking the time and effort to support my Ph.D. defense and graduation. A special thanks
to Peng Zhang, who has also been my mentor and co-author. Peng, I am truly grateful
for your hands-on tutoring in numerical linear algebra, and for the extra time you spent
with me after our project meetings with Rasmus—patiently answering my questions and
offering encouragement when I needed it most.

I am also lucky to have had the chance to work with amazing collaborators: Shun-
hua Jiang, Omri Weinstein, Maximilian Probst Gutenberg, and Deeksha Adil. I really
enjoyed our discussions, tackling tough research questions together, and sharing both the
excitement and struggles along the way.

A big thanks to my colleagues at ETH Zurich. I thank all the members of Rasmus’s
research group. In particular, I want to thank my office mates—Federico Soldà, Simon
Meierhans, and Aurelio Sulser—for the fun conversations, lunchtime discussions, and
other group activities. I also want to thank Claudia Günthart and Andrea Salow for all
their help with administrative matters.

Outside of research, I owe thanks to my friends, too many to name, who have made
life outside of work fun and fulfilling. I feel incredibly lucky to have met my partner,
Alexandre Binninger, through the summer retreat, one of the most memorable events or-
ganized by VMI at ETH Zurich. Alexandre, thank you for your support, encouragement,
and companionship throughout this journey. You have brought immense happiness into
my life. I am also grateful to your family for their warmth and kindness.

Finally, I want to thank my parents and brother, who, even from far away in China,
have always given me unconditional love and support throughout my life.

7

8

Contents

1 Introduction 1
1.1 Solving Linear Equations . 3
1.2 Solving Linear Programs . 5
1.3 Fine-Grained Complexity Analysis . 7
1.4 Our Results . 9
1.5 Organization of Thesis . 13

2 Preliminaries 15
2.1 Vectors and Matrices . 15
2.2 Simplicial Homology . 17
2.3 Approximately Solving Linear Equations 19

3 Hardness Results for Two-Commodity Flow 23
3.1 Prior Works . 23
3.2 Our Contributions . 23
3.3 Problem Definitions . 24

3.3.1 Discussion of the Problem Assumptions 24
3.3.2 Problems in Algebra Space . 26
3.3.3 Problems in Flow Space . 27

3.4 Main Results . 30
3.5 Algebra Space . 31

3.5.1 Overview . 31
3.5.2 LP(A) to LEN(A): Reducing Inequalities to Equalities 32
3.5.3 LEN(A) to 2-LEN(A): Reducing Integer Coefficients to {0,±1,±2} 33
3.5.4 2-LEN(A) to 1-LEN(A): Reducing Coefficients from ±2 to ±1 . . 35
3.5.5 1-LEN(A) to FHF(A): Encoding Equations as Flows 37

3.6 Flow Space . 39
3.6.1 Overview . 39
3.6.2 FHF(A) to FPHF(A) . 42
3.6.3 FPHF(A) to SFF(A): Dropping Homologous Flow Constraints . . 44
3.6.4 SFF(A) to 2CFF(A): Dropping Selective Flow Constraints 48
3.6.5 2CFF(A) to 2CFR(A): Dropping Fixed Flow Constraints 51
3.6.6 2CFR(A) to 2CF(A) . 55

3.7 A Unified Framework for LP Transformations 57
3.7.1 Characterizing LP Transformations 57
3.7.2 Unified Correctness Analysis . 58
3.7.3 Unified Error Analysis . 59
3.7.4 Examples . 60

9

10 Contents

3.7.5 Summary . 65

4 Hardness Results for Combinatorial Laplacians 67
4.1 Prior Works . 67
4.2 Our Contributions . 67
4.3 Notations and Preliminaries . 68

4.3.1 Matrix Classes . 68
4.3.2 Reduction Between Linear Equations 69

4.4 Main Results and Reduction Outline . 69
4.4.1 Overview of Our Proof . 70

4.5 Reducing DA to B2 in Feasible Case . 72
4.5.1 Reduction Algorithm . 72
4.5.2 Additional Notations . 76
4.5.3 Algorithm Runtime and Problem Size 76
4.5.4 Relation Between Exact Solutions 77
4.5.5 Relation Between Approximate Solutions 78
4.5.6 Bounding the Condition Number of the New Matrix 80

4.6 Reducing DA to B2 in General Case . 83
4.6.1 Warm-Up: Reweighting Infeasible Equations to Preserve Solutions 83
4.6.2 Reduction Algorithm . 84
4.6.3 Relation Between Exact Solutions 85
4.6.4 Relation Between Approximate Solutions 87
4.6.5 Bounding the Condition Number of the New Matrix 89

5 Hardness Results for More Structured Problems 91
5.1 Reducing General LE to Difference-Average LE 91
5.2 Reducing Difference-Average LE to 1-or-3 LE 93

5.2.1 Reducing Average Equations . 95
5.2.2 Reducing Difference Equations . 95

5.3 Reducing General LP to (Simplified) 1-or-3 LP 96
5.3.1 Reducing General LP to Scaled LP 97
5.3.2 Reducing Scaled LP to Difference-Average LP 98
5.3.3 Reducing Difference-Average LP to 1-or-3 LP 98
5.3.4 Reducing 1-or-3 LP to Simplified 1-or-3 LP 99

6 1-Laplacian Solver for Well-Shaped Simplicial Complexes 101
6.1 Prior Works . 101
6.2 Motivations and Applications . 102
6.3 Notations and Preliminaries . 103
6.4 Main Results . 104
6.5 Algorithm Overview . 105

6.5.1 Down-Laplacian . 105
6.5.2 Solver for Up-Laplacian . 105
6.5.3 Projection onto the Image of Up-Laplacian 108

6.6 Solver for Down-Laplacian . 109
6.7 Solver for Up-Laplacian . 110

6.7.1 Solver for Lup
1 (F, F) . 110

6.7.2 Solver for the Schur Complement 113
6.8 Projection onto the Image of Up-Laplacian 117

Contents 11

6.8.1 Preconditioning the Schur Complement 119
6.8.2 Proof of Lemma 6.5.9 . 122

6.9 Proof of the Main Theorem . 123
6.10 A Union of Pure 3-Complexes . 125

Bibliography 127

A Missing Proofs of Linear Algebra Facts 137

B Missing Proofs of Chapter 4 141
B.1 Reducing 2-Complex Boundary LE to Combinatorial Laplacian LE . . . 141
B.2 Connections With Interior Point Methods 142

C Missing Proofs of Chapter 6 145

12 Contents

Chapter 1

Introduction

Linear equations (LEs) and linear programs (LPs) are fundamental tools in both theory
and practice. They arise in a wide range of fields, including computer science, engineering,
economics, operations research, and the natural sciences. Moreover, efficient methods for
solving LEs and LPs form the backbone of many core algorithmic paradigms, such as
interior point methods, graph algorithms, and machine learning techniques. Given the
importance of linear equations and linear programs, understanding their computational
complexity is a central focus in theoretical computer science, numerical linear algebra, and
optimization. Advances in this area not only deepen our theoretical understanding but
also lead to faster and more scalable algorithms, driving progress in practical applications
across science and engineering.

Given a matrix A ∈ Rm×n, a vector b ∈ Rm, a system of linear equations is defined
as solving a vector x ∈ Rn such that

Ax = b.

In practice, we allow small error ϵ > 0, and the goal is to compute an approximate vector
x ∈ Rn such that

∥Ax − b∥2 ≤ ϵ ∥b∥2 .

A linear program is an optimization problem with a linear objective function and linear
constraints. Given a matrix A ∈ Rm×n, a vector b ∈ Rm, and a vector c ∈ Rn, a
canonical form of LP is as follows:

max
x∈Rn
{c⊤x : Ax ≤ b,x ≥ 0}.

Both LE and LP can be considered as special cases of a more general problem –
linear regression problem. Given a (tall) matrix A and a vector b, it seeks a vector x
to minimize ∥Ax − b∥p for some ℓp-norm. When p = 1 or ∞, the regression problem is
equivalent to solving linear programs; when p = 2, the regression problem is equivalent
to solving linear equations.

LE and LP are also related via Interior Point Methods (IPM), a family of algorithms
that solve linear programs in provably polynomial time. IPM reduces solving LP to
solving a sequence of Õ(

√
rank(A)L) systems of linear equations, where L is the bit

complexity of the input [LS14]. Thus, any improvement in solving linear equations would
imply a direct improvement in solving linear programs. Moreover, both linear programs
and linear equations are frequently used as subroutines for other optimization problems.

1

2 1. Introduction

Although significant progress has been made in designing fast solvers, the runtime
of algorithms for solving linear equations and linear programs get stuck at the current
matrix multiplicative time: the fastest solver for general system of n linear equations
over O(n) variables runs in time O(nω), where ω ≈ 2.3728596 . . . [AW21]; the fastest
solver for general linear programs with n constraints over O(n) variables runs in time

Õ(nω)1 [CLS21; Jia+21]. However, these runtimes can be impractically slow for modern
large-scale datasets.

In contrast to general LE and LP, many problems in practice possess additional struc-
tures that enable practically and provably faster solvers. Notable examples include: fast
solvers for linear equations in graph Laplacians, which run in nearly-linear time [ST04;
ST08; DS07; KS16; Kyn+16]; and fast algorithms for the maximum flow problem, a spe-
cial structured LP problem, which can be solved in sub-quadratic and even almost-linear
time [Mad13; Mad16; LS20; GLP21; Che+22]. These breakthroughs lead to a compelling
open question:

To what extent can these efficient algorithms be generalized to broader classes
of structured linear equations and linear programs?

There are two complementary perspectives to approach this question: the complexity
perspective and the algorithmic perspective. From the complexity perspective, our goal is
to establish computational lower bounds for structured problems. Unlike classical com-
plexity theory, which focuses on distinguishing “P” from “NP”, our analysis falls under
fine-grained complexity, as both LE and LP are already known to be in “P”. Specifically,
we aim to show that certain structured LEs and LPs problems cannot be solved faster
than a given time complexity, unless widely accepted complexity assumptions for LE
and LP fail. Such lower bounds help identify the fundamental limits of the structured
problems and how much room there is for further progress. From the algorithmic per-
spective, the focus is on designing faster algorithms by leveraging the problem’s specific
structure. This helps narrow the gap between theoretical complexity barriers and per-
formance of practical algorithms. Together, these two perspectives provide insights into
the limitations and potentials of efficient solvers for structured problems.

In this thesis, we examine certain structured linear equations and linear programs
from both the complexity perspective and the algorithmic perspective. From the com-
plexity perspective, we investigate natural generalizations of problems with known fast
algorithms. The two-commodity flow problem (2CF) generalizes the classical maximum
flow problem.2 Similarly, combinatorial Laplacians generalize graph Laplacians to higher-
dimensional graphs – simplicial complexes. While 2CF and combinatorial Laplacians
share structural similarities with their classical counterparts, no efficient algorithms have
been discovered for these problems, apart from some specific restricted cases. In this
thesis, we explain that the absence of efficient algorithms is not a coincidence. More
specifically, we establish hardness results for 2CF, showing that approximately solving
2CF is equally hard as approximately solving general LP to high accuracy. And we prove
that approximately solving linear equations in combinatorial Laplacians is as compu-
tationally hard as solving general linear equations to high accuracy. These results are
achieved by constructing efficient reduction algorithms from a general LP or LE into these
structured problems under study.

1We use Õ(·) to hide a polylogarithmic factor of dimensions, condition number, and accuracy.
2The maximum flow problem can be viewed as a single-commodity flow problem.

1. Introduction 3

Analogous to NP-completeness, we introduce new complexity classes, called sparse-
linear-equation (or sparse-linear-program) completeness. The term “completeness” re-

flects the idea that if an algorithm with runtime Õ((number of non-zeros)c) is known for

the structured LEs (or LPs), then an algorithm with runtime Õ((number of non-zeros)c)
exists for general LEs (or LPs). In this terminology, the above results can be equivalently
stated as 2CF and combinatorial Laplacians being sparse-LP and sparse-LE complete,
respectively. Additionally, we introduce a simplified structured problem called 1-or-3 LE
(or 1-or-3 LP), which is likewise sparse-LE (or sparse-LP) complete. We find that it plays
a role similar to 3-SAT in NP-completeness. Our findings coincide with those of Pr̊uša
and Werner (SODA’2017) [PW17], who further encoded 1-or-3 LP into a number of LP
relaxations of NP-hard problems, showing that these LP relaxations are also sparse-LP
complete.

Moreover, we investigate combinatorial Laplacians from an algorithmic perspective
as well. While our hardness results indicate that the general structure of combinatorial
Laplacians does not inherently provide computational advantages, we show that intro-
ducing mild geometric assumptions on the underlying simplicial complexes can lead to
significant algorithmic improvements. Specifically, we develop a sub-quadratic time solver
for linear equations in 1-Laplacians (i.e., 1-dimensional combinatorial Laplacians) when
the underlying simplicial complexes are well-shaped tetrahedral meshes.

1.1 Solving Linear Equations

Given linear equations Ax = b where A ∈ Rn×n, one can solve it by Gaussian Elimi-
nation, which runs in time O(n3). If applying the fast matrix multiplication by Strassen

[Str69], one can speed up solving the linear equations in runtime Õ(nω) by inverting A
and then multiplying A−1b, and it is by far the best known algorithm for solving general
dense linear equations in dimensions n× n [AW21].

When the coefficient matrix A is sparse, i.e., A has Õ(n) non-zero entries, the direct
matrix inversion approach is not desirable as A−1 cannot preserve sparsity of A. Instead,
iterative methods are more desirable to be used for solving sparse problems, where only
matrix-vector multiplication and vector-vector operations are conducted in each iteration.
For sparse linear equations with N non-zero coefficients and condition number κ, the best
known approximate algorithms run in time Õ(min{N2.27159, Nκ}), where the first runtime
is from [PV21; Nie22] and the second is by conjugate gradient [HS+52]. In particular,
if the coefficient matrix is symmetric positive semi-definite, the runtime for conjugate
gradient is Õ(N

√
κ).

Graph Laplacians and Nearly-Linear Time Solvers. An n× n Laplacian matrix
can be viewed as an undirected graph over n vertices and m edges. Each vertex of
the graph corresponds to a single row and a single column of the matrix. Each edge
corresponds to an n-dimensional vector whose non-zeros are only at the position of its
two endpoints. Formally, a graph Laplacian is defined as

L = D −A,

where D ∈ Rn×n is a diagonal matrix with vertex degrees on the diagonal entries; and
A ∈ Rn×n is a adjacency matrix, defined such that A(u, v) = 1 if (u, v) is an edge and

4 1. Introduction

0 otherwise. Alternatively, graph Laplacians can also be defined using the vertex-edge
incidence matrix B ∈ Rn×m, where

B(v, e) =


1 if e = (u, v)

−1 if e = (v, u)

0 otherwise

. (1.1)

In this case, the graph Laplacian is given by

L = BB⊤.

It is well-known that linear equations in graph Laplacians can be approximately solved
in nearly-linear time in the number of non-zeros of the graph Laplacians [ST14; KMP10;
KMP11; Kel+13; LS13; PS14; Coh+14b; KS16; Kyn+16; JS21].

Linear equations in graph Laplacians arise from using IPM for combinatorial problems
on graphs. As a result, these fast Laplacian solvers have led to significant developments
in algorithm design for graph problems such as maximum flow [Mad13; Mad16; Che+22],
minimum cost flow and lossy flow [LS14; DS08], and graph sparsification [SS08]. Col-
lectively, using fast Laplacian solvers to speed up graph algorithms was formulated as
the “Laplacian Paradigm” [Ten10]. Beyond graph Laplacians, nearly-linear time solvers
were extended to symmetric M-matrices [DS08], Block Diagonally Dominant matrices
and Connection Laplacians [Kyn+16], Directed Laplacians [Coh+17b].

Combinatorial Laplacians. Combinatorial Laplacians generalize graph Laplacians
to higher dimensional simplicial complexes – a collection of 0-simplexes (vertices), 1-
simplexes (edges), 2-simplexes (triangles), and their higher dimensional counterparts.
Given a d-dimensional simplicial complex K, for each 0 ≤ i ≤ d, ∂i is a linear map
that maps every i-simplex to a signed sum of its boundary (i − 1)-faces. We define the
i-Laplacian Li to be

Li = ∂⊤
i ∂i + ∂i+1∂

⊤
i+1. (1.2)

In particular, ∂1 is the vertex-edge incidence matrix defined in Equation (1.1), and L0 is
the graph Laplacian (following the convention, we define ∂0 = 0).

Combinatorial Laplacians play an important role in both pure mathematics and
applied areas. These matrices originate in the study of discrete Hodge decomposi-
tion [Eck44]: The kernel of Li is isomorphic to the ith homology space of K. The prop-
erties of combinatorial Laplacians have been studied in many subsequent works [Fri98;
DW02; DKM09; DKM15; MN21]. A central problem in homology theory is evaluating
the Betti number 3 of the ith homology space, which equals the rank of Li. In the case
of homology over the reals, computing the rank of Li can be reduced to solving a poly-
logarithmic number of linear equations in Li [BV21]. In applied areas, the computation
of Betti numbers over the reals is a key step in numerous problems in applied topology,
computational topology, and topological data analysis [Zom05; Ghr08a; Car09; EH10;
Cha+16]. In addition, combinatorial Laplacians have applications in statistical ranking
[Jia+11; Xu+12], graphics and image processing [Ma+11a; Ton+03a], electromagnetism

3Informally, the ith Betti number is the number of i-dimensional holes on a topological surface. For
example, the zeroth, first, and second Betti numbers represent the numbers of connected components,
one-dimensional “circular” holes, and two-dimensional “voids” or “cavities,” respectively.

1. Introduction 5

and fluids mechanics [DKT08], data representations [CMZ18], cryo-electron microscopy
[YL17a], biology [Sch+20]. We refer to the readers to [Lim20] for an accessible survey.

Inspired by the success of graph Laplacians, [Coh+14a] initiated the study of fast
approximate solvers for 1-Laplacian linear equations. They designed a nearly-linear time
approximate solver for simplicial complexes with zero Betti numbers and known collapsing
sequences.4 Later, [Bla+22] and [BN22] generalized this algorithm to subcomplexes of
such a complex with bounded first Betti numbers.5 One concrete example studied in these
papers is convex simplicial complexes that piecewise linearly triangulate a convex ball in
R3, for which a collapsing sequence exists and can be computed in linear time [Chi67;
Chi80].

Lately, an algorithm about spectral sparsification for dense simplicial complexes was
proposed by [Sav+25]. They proposed a probabilistic sampling method that reduces the

number of (k + 1)-dimensional simplexes from mk+1 ≈ O(m
k+1
k

k) (the complete-graph

case) down to Õ(mk), in time O(δ−3m
1+ 4

1+k

k), where δ controls the approximation error.
A direct application of this method is solving (dense) linear systems in the up-Laplacian
∂k+1∂

⊤
k+1 ∈ Rmk×mk . Specifically, by firstly sparsifying the (k+1)-simplexes via [Sav+25]’s

approach and then using the state-of-the-art sparse linear solver from [Nie22], the result-

ing runtime is Õ((k2mk)
2.27). This combined approach beats the direct pseudo-inverse

approach O(mω
k+1) = O

(
m

(1+ 1
k
)ω

k

)
for small k.

Geometric Structures and Nested Dissection. Another widely studied class of
structured linear equations consists of those whose non-zero entries exhibit geometrically
embedded structures. Given an n × n matrix A, its non-zero structures can be viewed
as a graph over n vertices, and the (i, j)th entry or the (j, i)th entry of A is non-zero if
there is an edge between vertex i and vertex j.

Asymptotically faster solvers exist if the geometric structures can be solved efficiently
by Nested Dissection [Geo73; LRT79; MT90; AY10]. Specifically, Nested Dissection is a
method to compute an ordering for Gaussian Elimination such that the number of fill-ins
is small. Fill-ins refer to the number of new non-zeros introduced in the matrix when
eliminating a variable. Using this idea, one can solve linear equations in a 2D planar in
time O(n1.5) [LRT79]. Additionally, faster solvers are also known for restricted classes of
total-variation matrices [KMT11], stiffness matrices from elliptic finite element systems
[BHV08a], and 2D and 3D truss stiffness matrices [DS07; Kyn+18].

1.2 Solving Linear Programs

The development of modern LP algorithms began with the introduction of the Simplex
Method by George Dantzig in 1947. While this method has proven to be highly efficient
in practice, its worst-case performance classifies it as an exponential-time algorithm in
theory. In the 1970s, the Ellipsoid Method was introduced for solving certain non-linear
optimization problems. In 1979, Khachiyan [Kha80a] demonstrated how this method
could be adapted to solve LPs, marking a significant theoretical milestone as the first

4A collapsing sequence gives a good ordering of Gaussian Elimination so that it runs in linear time.
However, deciding whether a general simplicial complex has a collapsing sequence is NP hard [Tan16].

5The solver has cubic dependence on the first Betti number.

6 1. Introduction

polynomial-time algorithm for linear programming. However, the Ellipsoid Method is
not competitive with the Simplex Method in practice.

The Interior Point Methods (IPMs) represent another major advancement in LP al-
gorithms. Unlike the Simplex Method, which traverses along the boundary of the feasible
polytope from one extreme point to another, or the Ellipsoid Method, which encircles the
polytope, IPMs navigate through the interior of the feasible solution space. In 1984, Kar-
markar [Kar84] proposed a polynomial-time IPM algorithm, further advancing the field
of LP. In practice, IPMs often rival the Simplex Method and, in particular, outperform
it on large-scale problems, making them a critical tool in modern optimization.

The fastest known solvers for general linear programs are based on Interior Point
Methods, and in particular the central path methods [Ren88]. Recently, there has been
significant progress on solvers for general linear programs, but the running time required
to solve a linear program with n variables and Õ(n) constraints (assuming polynomially

bounded entries and polytope radius) remains stuck at the Õ(nmax{ω,2+1/18}) [Jia+21].

Maximum Flow/Single-Commodity Flow Problem. Single-commodity flow prob-
lems have been an area of tremendous success for the development of graph algorithms,
starting with an era of algorithms influenced by early results on maximum flow and min-
imum cut [FF56] and later the development of powerful combinatorial algorithms for
maximum flow with polynomially bounded edge capacities [Din70; ET75; GR98]. Later,
a breakthrough nearly-linear time algorithm for electrical flows by Spielman and Teng
[ST04] lead to the Laplacian paradigm. A long line of work explored direct improvements
and simplifications of this result [KMP10; KMP11; Kel+13; PS14; KS16; JS21]. The
Laplacian paradigm also motivated research into undirected maximum flow [Chr+11;
LRS13; Kel+14; She13], which subsequently led to faster algorithms for directed max-
imum flow and minimum cost flow problems [Mad13; Mad16; LS20; KLS20; van+21;
GLP21] building on powerful tools using mixed-ℓ2, ℓp-norm minimizing flows [Kyn+19]
and inverse-maintenance ideas [Che+20]. A recent breakthrough is the development of
an almost-linear time algorithm for maximum flow and minimum-cost flow by Chen et
al. [Che+22], which currently represents the fastest approach. This algorithm computes
exact maximum flows and minimum-cost flows on directed graphs with |E| edges and
polynomially bounded integral demands, costs, and capacities in |E|1+o(1) time.

To compare these advances with general-purpose LP solvers, consider the running
times for state-of-the-art single-commodity maximum flow algorithms on a graph with
|V | vertices and |E| edges. For sparse graphs where |E| = Õ(|V |), formulating the
maximum flow problem as a linear program and solving it with general LP solvers results
in a running time of Õ(|V |2.372...). In contrast, specialized maximum flow solvers achieve a

much faster Õ(|V |1+o(1)) runtime. On dense graphs with |E| = Θ(|V |2), the gap narrows

but remains significant: maximum flow solvers achieve a runtime of Õ(|V |2), compared

to Õ(|V |2.372...) for general LP solvers. Therefore, the structure of maxflow can be used
to develop special-purpose solvers that outperform general LP solvers.

Multi-Commodity Flow Problem. Multi-commodity flow problems are a well-
studied area in algorithm design and have been the subject of numerous surveys [Ken78;
AMO93; OMV00; BKV09; Wan18], in part because a large number of problems can be
expressed as variants of multi-commodity flow. Significant advancements have been made
in solving the undirected multi-commodity flow problem, particularly in the low-accuracy

1. Introduction 7

regime. Leighton et al. [Lei+95] showed that undirected capacitated k-commodity flow in

a graph with |E| edges and |V | vertices can be approximately solved in Õ(k|E||V |) time,
completely routing all demands with (1 + ϵ) times the optimal congestion, albeit with
a poor dependence on the error parameter ϵ. This beats the solve-times for linear pro-
gramming in sparse graphs for small k, even with today’s LP solvers that run in current
matrix multiplication time, albeit with much worse error. This result inspired a series of
follow-up works focusing on improving low-accuracy algorithms [GK07; Fle00; Mad10].
Later breakthroughs in achieving almost- and nearly-linear time algorithms for undirected
single-commodity maximum flow also led to faster algorithms for undirected k-commodity
flow [Kel+14; She13; Pen16], culminating in Sherman’s introduction of area-convexity to

build a Õ(k|E|ϵ−1) time algorithm for approximate undirected k-commodity flow [She17].
In contrast, directed 2-commodity flow problems were seemingly harder, despite the

discovery of non-trivial algorithms for some special cases [Eva76; Eva78]. Alon Itai [Ita78]
proved a polynomial-time reduction from linear programming to directed 2-commodity
flow, before a polynomial-time algorithm for linear programming was known. For decades,
the only major progress on solving directed multi-commodity flow to high accuracy came
from improvements to general linear program solvers [Kha80b; Kar84; Ren88; Vai89].

Recently, a surprising advancement was made by van den Brand and Zhang [DZ23a],
who developed a high-accuracy algorithm for the k-commodity flow problem with a run-
time of Õ(k2.5

√
|E||V |ω−1/2). For comparison, solving the problem using the state-of-the-

art general LP solver [CLS21; Jia+21] takes runtime is Õ((k|E|)ω). While this algorithm

is slightly less efficient than general LP solvers in sparse graphs (i.e., |E| = Õ(|V |)), it
outperforms them on dense graphs (i.e., |E| = Θ(|V |2)). This marks the first improve-
ment to high accuracy multi-commodity flow algorithms that does not just stem from
improvements to general linear program solvers.

1.3 Fine-Grained Complexity Analysis

In classical complexity theory, we typically classify decision problems into complexity
classes such as “P” or “NP”, but do not often measure how difficult a polynomial-time
problem might be. Fine-grained complexity theory addresses this gap by quantifying the
precise difficulty of problems in P, going beyond the standard “P vs NP” framework.
It explains conditional time-complexity barriers for polynomial-time solvable problems,
relying on “core” conjectures (like the Strong Exponential-Time Hypothesis [IP01], the
Orthogonal Vectors Conjecture [Wil05], and assumptions about matrix multiplication).
By designing so-called fine-grained reductions from problem A to problem B, one can
show that a seemingly faster algorithm for problem B would imply a surprising speedup
for problem A. If problem A is believed to require a certain runtime, then problem B
also inherits this hardness barrier. Over the last decade, fine-grained complexity has
blossomed, yielding breakthroughs in explaining why certain polynomial-time problems
remain “as slow as” the best-known methods. It has also led to the discovery of many
meaningful relationships between problems, and equivalent classes. For a thorough treat-
ment of the foundational ideas and recent developments in fine-grained complexity and
algorithms, we refer interested readers to [Wil18].

Fine-Grained Reductions. The basic setup of fine-grained lower bounds is similar to
classic NP-harness reductions: A fine-grained reduction from problem A to problem B

8 1. Introduction

is an algorithm that given an instance I of size n for problem A, computes in time t(n)
an equivalent instance J of size s(n) for problem B. Thus, if there exists an algorithm
that solves problem B in time T (n), then by this reduction there is an algorithm solving
problem A in time t(n) + T (s(n)). In particular, if t(n) + T (s(n)) is faster than the
hypothesized optimal time complexity of problem A, then problem B cannot be solved
in time T (n) assuming the hypothesis for A. This provides a conditional lower bound of
problem B. For instance, under the rank-finding conjecture (i.e., no sub-nω method can
compute the rank of and Θ(n) × Θ(n) matrix), [BV21] gave conditional lower bounds
for general (dense) system of linear equations that even to get constant-factor or (1 −
O(1/nc))-factor approximation, we likely need O(nω) time.

Sometimes the chain of reductions goes in both directions, showing that problems
A and B are, in effect, “fine-grained equivalent”. In this case, if either problem’s time
complexity were improved, it would yield an improvement for the other. For example,
[WW18] introduced “subcubic reducibility”, which requires t(n) = O(nc) for some con-
stant c < 3. This work showed that many important problems on graphs and matrices
solvable in O(n3) time are equivalent under subcubic reductions (e.g., Negative-Triangle
Detection, Matrix-Product Verification). A single-direction reduction can also suffice if
problem B is a special case of A. Itai [Ita78] devised a polynomial-time reduction from a
linear program to a 2-commodity flow problem. Since 2-commodity flow is a special case
of linear programming, Itai concluded that solving 2-commodity flow and solving linear
programs are polynomial-time equivalent. In a similar vein, Kyng and Zhang [KZ17]
studied several structured linear systems, including two-commodity Laplacians, 2D truss
stiffness matrices, and total variation matrices. By constructing reduction algorithms
from general linear equations to these structured linear equations, it is concluded that if
we can quickly solve either of these structured linear equations, then we can quickly solve
linear equations in any matrix.

Error Analysis in Reductions. Many fine-grained reductions focus on exact versions
of problems. For instance, Itai [Ita78] established that exactly solving linear program-
ming is polynomial-time equivalent to exactly solving a sequence of related problems
(e.g., linear equalities under nonnegative constraints, homologous flow, two-commodity
flow). Dobkin and Reiss [DR80] later identified additional LP-complete problems in
computational geometry, such as hyperplane intersection and extreme-point detection.
Trevisan and Xhafa [TX98] proved that exactly solving packing LPs is P-complete. And
[PW17] showed that solving LP relaxations of many NP-hard combinatorial optimization
problems exactly is as hard as solving general LPs exactly.

In practice, however, approximate algorithms are more widely used. In fine-grained
complexity analysis, they typically use the same reduction frameworks as in the exact
setting, but must also account for error analysis : tracking the error propagation when
mapping solutions to the reduced problem (problem B) back to that of the original
problem (problem A). For instance, Kyng and Zhang [KZ17] not only provided reduction
algorithms from general linear equations to certain structured systems, but also conducted
error analysis to show that errors remain polynomially bounded when mapping solutions
back to the original system. Moreover, they explicitly bounded the condition number of
the new matrix with respect to that of the original one.

Approximate algorithms usually have runtimes dependent on error parameters. Er-
ror analysis in fine-grained complexity analysis can sometimes help to set a separation
between low-accuracy and high-accuracy algorithms. A low-accuracy algorithm’s run-

1. Introduction 9

time is polynomial in 1/ϵ, whereas high-accuracy algorithms depend polylogarithmically
on 1/ϵ. Musco et al. [Mus+19] developed a low-accuracy algorithm for approximating
several spectral sum problems, breaking the O(nω) barrier. On the hardness side, they
showed that achieving milder error dependencies would imply breakthroughs on the tri-
angle detection algorithms for general graphs running in faster than the state-of-the-art
matrix multiplication time, indicating that fast high-accuracy spectrum approximation
algorithms are unlikely without major algorithmic breakthroughs. With a similar spirit,
Kyng, Wang, and Zhang [KWZ20] studied whether the error dependence in packing LP

solvers can be improved, beyond the known Õ(N/ϵ) bound (where N is the number of
non-zero entries). By creating a fine-grained reduction from solving dense or sparse sys-
tems of linear equations to such packing LPs, the paper shows that faster ϵ-dependence
in packing LP solvers would contradict known hardness assumptions for systems of linear
equations.

1.4 Our Results

Hardness Results for Two-Commodity Flow. We explore the hardness of 2-
commodity maximum throughput flow, which for brevity we refer to as the 2-commodity
flow problem or 2CF. Given a directed graph with edge capacities and two source-sink
pairs, this problem requires us to maximize the sum of the flows routed between the
two source-sink pairs, while satisfying capacity constraints and flow conservation at the
remaining nodes. We relate the difficulty of 2CF to that of LP by developing a highly
efficient reduction from the former to the latter. The result presented below is joint work
with Kyng and Zhang [DKZ22].

Theorem 1.4.1 (Hardness for 2CF (Informal)). Consider any polynomially bounded
linear program max{c⊤x : Ax ≤ b,x ≥ 0} with integer coefficients and N non-zero
entries. In nearly-linear time, this linear program can be transformed into a 2-commodity
flow problem that is feasible if and only if the original linear program is feasible. The
resulting 2-commodity flow instance has Õ(N) edges and polynomially bounded integral
edge capacities. Furthermore, any solution to the 2-commodity flow instance with at most
ϵ additive error on each constraint and value at most ϵ from the optimum can be converted
into a solution to the original linear program with additive error Õ(poly(N)ϵ) on each

constraint and similarly value within Õ(poly(N)ϵ) of the optimum.
This implies that, for any constant c > 1, if any 2-commodity flow instance with

polynomially bounded integer capacities can be solved with ϵ additive error in time
Õ (|E|c · poly log(1/ϵ)), then any polynomially bounded linear program can be solved with

ϵ additive error in time Õ (N c · poly log(1/ϵ)).

We say a problem is sparse-linear-program complete if any polynomially bounded
linear program with N non-zero entries can be reduced, in Õ(N) time, to an instance
of the problem such that: (1) The size of the resulting instance increases by at most a
polylogarithmic factor in N ; (2) Any solution to the reduced problem with additive error
ϵ can be efficiently mapped into a solution of the original linear program with additive
error poly(N)ϵ. With this terminology, the hardness result for 2CF can be concisely
stated as: 2CF is sparse-linear-program complete.

The formal definitions of LP and 2CF are provided later in Chapter 3 (in Definitions
3.3.1 and 3.3.7). It is important to note that, under our definitions, any 2CF problem

10 1. Introduction

is already an LP, and so no reduction in the other direction is necessary. Additionally,
our definitions of approximate solutions for LPs (Definition 3.3.4) and 2CF problems
(Definition 3.3.16) ensure compatibility: solving a 2CF problem as an LP and obtaining
an approximate solution guarantees that the 2CF problem is also approximately solved
according to our definition of approximate solutions for 2CF.

Our proof follows the outline of Itai’s polynomial-time reduction of a linear program
to a 2-commodity flow problem [Ita78], which showed that exactly solving 2-commodity
flow and exactly solving linear programming are polynomial-time equivalent. We improve
Itai’s reduction to nearly preserve the problem representation size in each step. In addi-
tion, we establish an error bound for approximately solving each intermediate problem
in the reduction, and show that the accumulated error is polynomially bounded. We
remark that our hardness results only rule out possibilities of fast multi-commodity flow
algorithms for sparse directed graphs in the high accuracy regime. Outside of this setting,
efficient multi-commodity flow solvers may still exist [She17; Mad10; DZ23a]. We also
remark that our reduction does not run in strongly polynomial time, and it remains an
open question whether 2-commodity flow and linear programming are equivalent in the
strongly polynomial time regime.

Hardness Results for Combinatorial Laplacians. We study linear equations in
combinatorial Laplacians of k-dimensional simplicial complexes (k-complexes), a natural
generalization of graph Laplacians. It is known that nearly-linear time solvers exist for
graph Laplacians. However, nearly-linear time solvers for combinatorial Laplacians are
only known for restricted classes of complexes. Our findings demonstrate that solving
linear equations in combinatorial Laplacians of 2-complexes is as computationally hard
as solving general linear equations. The following results are from the paper [Din+22]
coauthored with Kyng, Probst Gutenberg, and Zhang.

Recall that approximately solving linear equation Ax = b is to find x̃ such that
∥Ax̃ − b∥2 ≤ ϵ ∥b∥2 for some ϵ. To formalize our result, we introduce the notion of sparse-
linear-equation complete. Consider a family of matrices B. We say that B is sparse-linear-
equation complete if, for any instance (A, b, ϵ) we can construct an instance (B ∈ B, c, δ)
in Õ(nnz(A)) time such that: (1) nnz(B) = Õ(nnz(A)); (2) δ = ϵ/ poly(nnz(A)), and
any approximate solution y satisfying ∥By − c∥2 ≤ δ ∥c∥2 can be mapped back to an
approximate solution x̃ to Ax = b with error at most ϵ.

In this terminology, we succinctly state the main theorems derived in this study.

Theorem 1.4.2 (Hardness for Combinatorial Laplacians (Informal)). Linear equations
in combinatorial Laplacians of 2-complexes are sparse-linear-equation complete.

The result is established through a three-step reduction process:

1. Reduction to Difference-Average Equations: In the first step, we show that
a simple class of linear equations, which we term difference-average equations, is
sparse-linear-equation complete. These equations take one of two forms:

x (i)− x (j) = b or x (i) + x (j) = 2x (k).

This reduction was implicitly demonstrated in [KZ17] as an intermediate step, and
leads to the following result:

1. Introduction 11

Theorem 1.4.3 (Hardness for Difference-Average Matrices (Informal)). Linear
equations in the difference-average matrices are sparse-linear-equation complete.

For completeness, we provide an explicit and simplified proof in Section 5.1.

2. Reduction to Boundary Operators of 2-Complexes: Next, we reduce the
problem of solving difference-average equations to solving linear equations in the
boundary operator ∂2 of a 2-complex. This leads to the following result:

Theorem 1.4.4 (Hardness for Boundary Operators (Informal)). Linear equations
in the boundary operators ∂2 of 2-complexes are sparse-linear-equation complete.

Solving ∂2f = d can be interpreted as computing a flow f in the triangle space
of a 2-complex subject to pre-specified edge demands d . Our reduction is inspired
by a reduction in [MN21] that proves NP-hardness of computing maximum integral
flows in 2-complexes via a reduction from graph 3-coloring problem. An important
aspect of our contribution is that we carefully control the number of non-zeros
of the boundary operator matrix that we construct, and we bound the condition
number of this matrix and how error propagates from an approximate solution to
the boundary operator problem back to the original difference-average equations.
Details are provided in Section 4.5 and 4.6.

3. Reduction to Combinatorial Laplacians of 2-Complexes: In the final step,
we reduce the problem of solving in a boundary operator ∂2 to solving in the corre-
sponding combinatorial Laplacian L1. Consequently, the combinatorial Laplacian
problem is at least as hard as the boundary operator problem. This is captured in
the following lemma:

Lemma 1.4.5 (Reduction from Boundary Operators to Combinatorial Laplacians
(Informal)). Suppose we can solve linear equations in combinatorial Laplacians of
2-complexes to high accuracy in nearly-linear time. Then, we can solve linear equa-
tions in boundary operators ∂2 of 2-complexes to high accuracy in nearly-linear time.

The proof of this lemma relies on standard arguments in linear algebra. A formal
statement of the theorem, along with a detailed proof, is provided in Appendix B.1.

Again, we remark that our hardness results rule out the possibility of fast combi-
natorial Laplacian solvers for sparse simplicial complexes in the high-accuracy regime.
However, efficient solvers may still exist outside this setting [Sav+25].

More Hardness Results. Motivated by the hardness results for two-commodity flow
and combinatorial Laplacians, we aim to broaden the classes of sparse-linear-program
complete and sparse-linear-equation complete problems, in a way analogous to the well-
established theory of NP-completeness. However, we later found that our ideas align
with those of Pr̊uša and Werner [PW17], who proved that LP relaxations of some NP-
hard combinatorial optimization problems are sparse-LP complete. While the results
presented here remain unpublished, we include them for completeness—particularly since
our derivation techniques differ from those used in [PW17].

12 1. Introduction

Our approach begins with difference-average equations, which we reduce to a simpler
form that we call 1-or-3 equations. In this form, each row has either one or three non-zero
entries, taking one of two shapes:

x (i) + x (j) = x (q) or x (i) = 1.

We extend this reduction from linear equalities (LE) to linear programs (LP), obtain-
ing (simplified) 1-or-3 linear programs of the form

{Ax = 1, x ≥ 0},

where each equality constraint is either

x (i) + x (j) + x (q) = 1 or x (i) = 1.

From this simplified LP form, one can construct relaxations of various NP-hard combi-
natorial optimization problems—such as Set Cover, Set Packing, Maximum Satisfiability,
and Maximum Independent Set. For additional details on these constructions, we refer
readers to [PW17]. These constructions highlight how fundamental the 1-or-3 form is to
understanding the complexity of other structured linear equations and linear programs.

Efficient Algorithm for 1-Laplacian Solvers. Previously, nearly-linear time ap-
proximate solvers for 1-Laplacian were developed for simplicial complexes with known
collapsing sequences and bounded Betti numbers, such as those triangulating a three-ball
in R3 [Coh+14a; Bla+22; BN22]. Additionally, Nested Dissection provides quadratic-
time exact solvers for more general systems where the non-zero structures correspond to
well-shaped simplicial complexes embedded in R3. We generalize the specialized solvers
for 1-Laplacians to simplicial complexes with additional geometric structures but without
collapsing sequences and bounded Betti numbers. Furthermore, we improve the runtime
of Nested Dissection for these broader settings. The results below are from the paper
[DZ23b], coauthored with Zhang.

We focus on simplicial complexes possessing the following two geometric structures:

1. Each simplex has a bounded aspect ratio,6 referred to as being “stable”.

2. The complex can be partitioned into disjoint, balanced regions with well-shaped
interiors and boundaries, a property we call “r-hollowing”.

Our first result applies to pure 3-complex7 with a given r-hollowing.

Theorem 1.4.6 (1-Laplacian Solver for a Pure 3-Complex (Informal)). Let K be a pure
3-complex embedded in R3 and composed of n stable simplexes. Given an r-hollowing for
K, for any ϵ > 0, we can approximately solve a system in the 1-Laplacian of K within
error ϵ in time:

O
(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3

)
.

6The aspect ratio of a geometric shape S is the radius of the smallest ball containing S divided by
the radius of the largest ball contained in S.

7A simplicial complex is pure if every maximal simplex (i.e., a simplex that is not a proper subset
of any other simplex in the complex) has the same dimension. For example, a pure 3-complex is a
tetrahedron mesh that consists of tetrahedra and their subsimplexes.

1. Introduction 13

In particular, the runtime is minimized (up to constant factors) when r = Θ(n3/5), re-
sulting in:

O(n8/5 log(n/ϵ)).

In Section 9 of [DZ23b], sufficient conditions are established for 3-complexes that
enable the computation of an r-hollowing in nearly-linear time. We omit this part from
the thesis.

We remark that the runtime in Theorem 1.4.6 does not depend on the Betti numbers
of K and does not require collapsing sequences. When r = o(n) and r = ω(1), the runtime
is o(n2), asymptotically faster than Nested Dissection [MT90]. The solver in [BN22] for

a 1-Laplacian system on K, as stated in Theorem 1.4.6, has a runtime of Õ(β3m), where
m is the number of simplexes in X ⊃ K with a known collapsing sequence and β is the
first Betti number of K. In the worst-case scenario, m can be as large as Ω(n2). However,
[BN22] does not require the simplexes to be stable or K to have a known r-hollowing.

Next, we examine unions of pure 3-complexes glued together by identifying subsets
of simplexes on the boundary components (called exterior simplexes). Each 3-complex

chunk has a Θ(n
3/5
i)-hollowing, where ni is the number of simplexes in the ith chunk.

We remark that such a union of 3-complexes, called U , may not be embeddable in R3.
As a result, previously established methods, including those from [Coh+14a; Bla+22;
BN22] and Nested Dissection, cannot be directly applied in this scenario. Building on
our algorithm from Theorem 1.4.6, we develop an efficient solver for U with a runtime
that scales sub-quadratically with the size of U and polynomially with the number of
chunks and the number of shared exterior simplexes by more than one chunk.

Theorem 1.4.7 (1-Laplacian Solver for a Union of Pure 3-Complexes (Informal)). Let
U be a union of pure 3-complexes that are glued together by identifying certain subsets of
their exterior simplexes. Assume that each 3-complex chunk is embedded in R3, contains
ni stable simplexes, and has a known Θ(n

3/5
i)-hollowing. For any ϵ > 0, we can solve a

system in the 1-Laplacian of U within error ϵ in time

Õ
(
n8/5 + n3/10k2 + k3

)
,

where n is the number of simplexes in U and k is the number of exterior simplexes shared
by more than one complex chunk.

When h = Õ(1) and k = Õ(n1/2), the runtime of the solver in Theorem 1.4.7 matches
that of Theorem 1.4.6. Moreover, when h = o(n2/5), k = o(n3/5), the runtime is o(n2),
asymptotically faster than Nested Dissection.

1.5 Organization of Thesis

In Chapter 2, we introduce the notations and foundational concepts from linear alge-
bra and topology that will be used throughout the thesis. In Chapter 3, we establish
the hardness of solving two-commodity flow problems, proving Theorem 1.4.1. Chap-
ter 4 focuses on the hardness of solving linear equations in combinatorial Laplacians of
simplicial complexes and proves Theorem 1.4.2. Chapter 5 presents additional hardness
results, including reduction algorithms for difference-average equations, 1-or-3 equations,

14 1. Introduction

and 1-or-3 linear programs. In Chapter 6, we present an efficient algorithm for solving
1-Laplacian systems, proving Theorems 1.4.6 and 1.4.7. In Appendix A, B, and C, we
include missing proofs of Chapter 2, 4, and 6, respectively.

Chapter 2

Preliminaries

2.1 Vectors and Matrices

Indexing. Given a vector x ∈ Rn, for 1 ≤ i ≤ n, we let x (i) be the ith entry of x ; for

1 ≤ i < j ≤ n, let x (i : j) be
[
x (i) x (i+ 1) . . . x (j)

]⊤
. We use 1n,0n to denote an

n-dimensional all-one vector and all-zero vector, respectively.
Given a matrix A ∈ Rm×n, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, we let A(i, j) be the (i, j)th

entry of A; for S1 ⊆ {1, . . . ,m}, S2 ⊆ {1, . . . , n}, let A(S1, S2) be the submatrix with row
indices in S1 and column indices in S2. Furthermore, we let A(S1, :) = A(S1, {1, . . . , n})
and A(:, S2) = A({1, . . . ,m}, S2). In particular, we use A(i) to denote the ith row of A.
In addition, we use nnz(A) to denote the number of non-zero entries of A. Without loss
of generality, we assume that nnz(A) ≥ max{m,n}.

Subspaces. The image of A is the linear span of the columns of A, denoted by Im(A),
and the kernel of A to be {x ∈ Rn : Ax = 0}, denoted by Ker(A). A fundamental
theorem of Linear Algebra states

Rm = Im(A)⊕Ker(A⊤).

Fact 2.1.1. For any matrix A ∈ Rm×n, Im(A) = Im(AA⊤).

All the facts in this section are well-known. For completeness, we include their proofs
in Appendix A.

Pseudo-Inverse and Projection Matrix. The pseudo-inverse of A is defined to be a
matrix A† that satisfies all the following four criteria: (1) AA†A = A, (2) A†AA† = A†,
(3) (AA†)⊤ = AA†, (4) (A†A)⊤ = A†A. The orthogonal projection matrix onto Im(A)
is

ΠIm(A) = A(A⊤A)†A⊤. (2.1)

Eigenvalues and Condition Numbers. Given a square matrix A ∈ Rn×n, let
λmax(A) be the maximum eigenvalue of A and λmin(A) the minimum non-zero eigen-
value of A. The condition number of A is defined as the ratio of these two values:

κ(A) =
λmax(A)

λmin(A)
.

15

16 2. Preliminaries

A symmetric matrix A ∈ Rn×n is called positive semi-definite (PSD) if and only if
x⊤Ax ≥ 0 for all x ∈ Rn. Equivalently, A is PSD if and only if all its eigenvalues of A
are non-negative.

For a non-square matrix A ∈ Rm×n, the singular values of A are defined as the square
roots of the eigenvalues ofA⊤A, which is always symmetric and PSD. Let σmax(A) denote
the maximum singular value of A and σmin(A) the minimum non-zero singular value of
A. If A is a symmetric PSD matrix, then its eigenvalues and singular values coincide.

For two symmetric matrices A,B ∈ Rn×n, we say A ≽ B if A − B is PSD. The
condition number of A relative to B is defined as:

κ(A,B)
def
= min

{
α

β
: β ·ΠIm(A)BΠIm(A) ≼ A ≼ α ·B

}
,

where ΠIm(A) is the projection matrix as defined in Equation (2.1).

Fact 2.1.2. Let A,B ∈ Rn×n be symmetric matrices such that A ≼ B . Then, for any
V ∈ Rm×n,

VAV ⊤ ≼ VBV ⊤.

Norms. Given a vector x ∈ Rn, let1

∥x∥1 =
∑
i∈[n]

|x (i)| , ∥x∥∞ = max
i∈[n]
|x (i)| , ∥x∥2 =

√√√√ n∑
i=1

x (i)2,

where ∥x∥2 is called the Euclidean norm. When M ∈ Rn×n is a PSD, we also define

∥x∥M =
√
x⊤Mx .

Next, for a matrix A ∈ Rm×n, we define its operator norm induced by a vector p-norm
as

∥A∥p
def
= max

x ̸=0

∥Ax∥p
∥x∥p

.

In particular, for p = 1,∞, 2, we have

∥A∥1 = max
j∈[n]

∑
i∈[m]

|A(i, j)| , ∥A∥∞ = max
i∈[m]

∑
j∈[n]

|A(i, j)| , ∥A∥2 =
√

λmax(A
⊤A) = σmax(A).

Moreover, we use ∥A∥max to denote the maximum absolute entry of A, i.e.,

∥A∥max = max
i,j
|A(i, j)| .

We define a function X that takes an arbitrary number of matrices A1, . . . ,Ak1 ,
vectors b1, . . . , bk2 , and scalars K1, . . . , Kk3 as arguments, and returns the maximum of
the entries of all the arguments, i.e.,

X(A1, . . . ,Ak1 , b1, . . . , bk2 , K1, . . . , Kk3)

= max {∥A1∥max , . . . , ∥Ak1∥max , ∥b1∥∞ , . . . , ∥bk2∥∞ , |K1| , . . . , |Kk3|} .
1We sometimes use ∥x∥max for ∥x∥∞ interchangeably.

2. Preliminaries 17

2.2 Simplicial Homology

Simplicial Complexes. A k-dimensional simplex (or k-simplex) σ = conv{v0, . . . , vk}
is the convex hull of k + 1 affinely independent points v0, . . . , vk. For example, 0, 1,
2-simplexes are vertices, edges, and triangles, respectively. A face of σ is the convex hull
of a non-empty subset of {v0, v1, . . . , vk}. An orientation of σ is given by an ordering
Π of its vertices, written as σ = [vΠ(0), . . . , vΠ(k)], such that two orderings define the
same orientation if and only if they differ by an even permutation. If Π is even, then
[vΠ(0), . . . , vΠ(k)] = [v0, . . . , vk]; if Π is odd, then [vΠ(0), . . . , vΠ(k)] = −[v0, . . . , vk].

A simplicial complex K is a finite collection of simplexes such that: (1) for every
σ ∈ K if τ ⊂ σ then τ ∈ K; and (2) for every σ1, σ2 ∈ K, σ1 ∩ σ2 is either empty or a
face of both σ1, σ2. The dimensions of K is the maximum dimension of any simplex in
K. We refer to a simplicial complex in d dimensions as a d-complex. For 1 ≤ k ≤ d,
the k-skeleton of a d-complex K is the subcomplex consisting of all the simplexes of K of
dimensions at most k. In particular, the 1-skeleton of K is a graph. A simplicial complex
is pure if every maximal simplex (i.e., one not properly contained in any larger simplex
in K) has the same dimension. For example, a tetrahedron (together with all its faces)
forms a 3-dimensional pure simplicial complex: the only maximal simplex in it is the
tetrahedron itself, which is of dimension 3.

Embedding and Triangulation. A piecewise linear embedding of a 3-complex in R3

maps a 0-simplex to a point, a 1-simplex to a line segment, a 2-simplex to a triangle, and
a 3-simplex to a tetrahedron. In addition, the interiors of the images of simplexes are
disjoint and the boundary of each simplex is mapped to the appropriate simplexes. Such
an embedding of a simplicial complex K defines an underlying topological space K – the
union of the images of all the simplexes of K. We say K is convex if K is convex. We
say K triangulates a topological space X if K is homeomorphic to X. A simplex σ of K
is a exterior simplex if σ is contained in the boundary of K. A connected component of
exterior simplexes is called a boundary component of K.

More concretely, if K is a 2-dimensional manifold, it can be triangulated by 2-
complexes, where every edge in the 2-complex is contained in exactly one triangle (bound-
ary edge) or two triangles (interior edge). An oriented triangulation of a 2-dimensional
manifold is a triangulation together with an orientation for each triangle such that any
two neighboring triangles induce opposite signs on their shared interior edge. Refer to
Figure 2.1 for an example of (oriented) triangulation: the topological space is a disk;
boundary edges are [v1, v2], [v2, v3], [v1, v3]; interior edges are [v1, v4], [v2, v4], [v3, v4]; the
orientation for each triangle is clockwise.

Boundary Operators. Given an oriented d-dimensional simplicial complex K, for each
0 ≤ i ≤ d, let Ck denote k-chain, which is a formal sum of the oriented k-simplexes in K
with the coefficients over R. We can define a sequence of boundary operators:

Cd(K)
∂d−→ Cd−1(K)

∂d−1−−→ · · · ∂2−→ C1(K)
∂1−→ C0(K),

where each linear map ∂k : Ck(K) → Ck−1(K) is a boundary operator that maps every
k-simplex to a signed sum of its boundary (k − 1)-faces. Specifically, for an oriented

18 2. Preliminaries

k-simplex σ = [v0, v1, . . . , vk],

∂k(σ) =
k∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk],

where [v0, . . . , v̂i, . . . , vk] is the oriented (k − 1)-simplex obtained by removing vi from
σ, and (−1)i is its induced orientation. The operator ∂k can be written as a matrix
in |Ck−1| × |Ck| dimensions, where |Ck−1| , |Ck| is the number of (k − 1)-simplexes and
k-simplexes in K, respectively. The (i, j)th entry of ∂k is ±1 if the ith (k − 1)-simplex
is a face of the jth k-simplex where the sign is determined by the orientations, and 0
otherwise. See Figure 2.1 and Equation (2.2) for an example.

v1 v2

v3

v4

Figure 2.1: An example of boundary operator and oriented triangulation. We set a
clockwise orientation for 2-simplexes, and set the orientation for 1-simplexes as the order
of increasing vertex indices.

∂2 =



[v1, v4, v2] [v2, v4, v3] [v1, v3, v4]
[v1, v2] −1 0 0
[v2, v3] 0 −1 0
[v1, v3] 0 0 1
[v1, v4] 1 0 −1
[v2, v4] −1 1 0
[v3, v4] 0 −1 1

. (2.2)

An important property of the boundary operator is that applying the boundary op-
erator twice results in the zero operator, i.e.,

∂k∂k+1 = 0. (2.3)

This implies
Im(∂k+1) ⊆ Ker(∂k).

Thus, we can define the quotient space Hk = Ker(∂k) \ Im(∂k+1), referred to as the kth
homology space of K. The dimension of Hk is the kth Betti number of K, denoted as βk.
In particular, if βk = 0, then

Im(∂⊤
k)⊕ Im(∂k+1) = R|Ck|.

Betti numbers play an important role in understanding the homology spaces. Intuitively,
the kth Betti number refers to the number of k-dimensional “holes” on a topological
surface. For example, β0 represents the number of connected components; β1 represents
the number of “circular” holes; β2 represents the number of “voids” or “cavities”.

2. Preliminaries 19

Combinatorial Laplacians. Combinatorial Laplacians arise from the discrete Hodge
decomposition.

Theorem 2.2.1 (Hodge Decomposition [Lim20]). Let A ∈ Rm×n and B ∈ Rn×p be
matrices satisfying AB = 0. Then, there is an orthogonal direct sum decomposition

Rn = Im(A⊤)⊕Ker(A⊤A+BB⊤)⊕ Im(B).

By Equation (2.3), it is valid to set A = ∂k and B = ∂k+1. The matrix we get in the
middle term is the combinatorial Laplacian:

Lk
def
= ∂⊤

k ∂k + ∂k+1∂
⊤
k+1.

In particular, L0 = ∂1∂
⊤
1 is the graph Laplacian. The kth homology space Hk(K) is

isomorphic to Ker(Lk), and thus the kth Betti number of K equals the dimension of
Ker(Lk).

2.3 Approximately Solving Linear Equations

We define approximately solving linear equations in a general form, following [KZ17]. For
more details, we refer the readers to Section 2.1 of [KZ17].

Definition 2.3.1 (Linear Equation Problem (le)). Given a matrix A ∈ Rm×n, a vector
b ∈ Rm, we refer to the linear equation problem for the tuple (A, b), denoted by le (A, b),
as the problem of finding an x ∈ Rn such that

x ∈ argmin
x∈Rn

∥Ax − b∥2 .

The exact solution to le has a closed-form solution, as shown in the following fact.

Fact 2.3.2. Let x ∗ ∈ argminx∈Rn ∥Ax − b∥2. Then,

Ax ∗ = A(A⊤A)†A⊤b = ΠIm(A)b

and
∥Ax ∗ − b∥22 =

∥∥(I −ΠIm(A))b
∥∥2
2
,

where ΠIm(A) is the projection matrix as defined in Equation (2.1).

By the above fact, solving le (A, b) is equivalent to finding an x such that Ax =
ΠIm(A)b. This equation is known as the normal equation, and it is always feasible. If
b ∈ Im(A), then ΠIm(A)b = b.

In practice, we are more interested in approximately solving linear equations, since
numerical errors are unavoidable in data collection and computation, and approximate
solvers often run faster.

Definition 2.3.3 (Linear Equation Approximation Problem (lea)). Given a matrix
A ∈ Rd×n, vectors b ∈ Rd, and an error parameter ϵ ∈ (0, 1], we refer to linear equation
approximate problem for the tuple (A, b, ϵ), denoted by lea (A, b, ϵ), as the problem of
finding an x ∈ Rn such that∥∥Ax −ΠIm(A)b

∥∥
2
≤ ϵ

∥∥ΠIm(A)b
∥∥
2
.

20 2. Preliminaries

The following fact demonstrates that the approximate error in Definition 2.3.3 is
equivalent to several error notions that are commonly used in solving linear equations.

Fact 2.3.4. ∥∥Ax −ΠIm(A)b
∥∥
2
=
∥∥A⊤Ax −A⊤b

∥∥
(A⊤A)†

= ∥x − x ∗∥A⊤A .

After introducing the approximate solution problem in Definition 2.3.3, it is important
to understand how the approximate solution relates to the exact solution. The following
fact establishes a relationship between the error of the approximate solution and the exact
solution error.

Fact 2.3.5. Let x be a solution to lea (A, b, ϵ) and x ∗ be the exact solution. Then,

∥Ax − b∥22 ≤ ∥Ax ∗ − b∥22 + ϵ2
∥∥ΠIm(A)b

∥∥2
2
.

Linear Equations in PSD Matrices. Consider the eigen-decomposition of a PSD
rank-k matrix A =

∑
1≤i≤k λiu iu

⊤
i , where λi ≥ 0 are eigenvalues and u i are the corre-

sponding orthogonal eigenvectors. Let A† =
∑

1≤i≤k λ
−1
i u iu

⊤
i be the pseudo-inverse of

A, and we have

AA† = A†A =
∑
1≤i≤k

u iu
⊤
i = ΠIm(A).

Furthermore, let A1/2 =
∑

1≤i≤k λ
1/2
i u iu

⊤
i be the square root A, and we have

A1/2A1/2 = A. Similarly, let A†/2 =
∑

1≤i≤k λ
−1/2
i u iu

⊤
i be square root of A†. By

Fact 2.1.1, we have Im(A1/2) = Im(A), thus

A1/2A†A1/2 = A1/2A†/2 = A†/2A1/2 = ΠIm(A). (2.4)

It is easy to see that A1/2,A†,A†/2 are also PSD.

The following fact provides two useful results about the perturbation of PSD matrices,
which will help analyze approximation errors and stability properties in such systems of
linear equations.

Fact 2.3.6. Let A,Z ∈ Rn×n be two symmetric PSD matrices.

1. If (1− ϵ)A† ≼ Z ≼ (1 + ϵ)A†, then for any b ∈ Im(A),

∥AZb − b∥2 ≤ ϵ
√

κ(A) ∥b∥2 .

2. If ∥AZb − b∥2 ≤ ϵ ∥b∥2 for any b ∈ Im(A), then

(1− ϵ)A† ≼ ΠIm(A)ZΠIm(A) ≼ (1 + ϵ)A†.

2. Preliminaries 21

Schur Complement. Let A ∈ Rn×n, and let F ∪ C be a partition of {1, . . . , n}. We
write A as a block matrix:

A =

[
A(F, F) A(F,C)
A(C,F) A(C,C)

]
. (2.5)

We define the (generalized) Schur complement of A onto C to be

Sc(A)C = A(C,C)−A(C,F)A(F, F)†A(F,C).

The Schur complement appears in performing a block Gaussian Elimination on matrix
A to eliminate the indices in F .

Fact 2.3.7. For any fixed vector y ,

min
x

[
x⊤ y⊤]A [x

y

]
= y⊤Sc(A)Cy .

Using Fact 2.3.7, we can obtain the following fact that Schur complement preserves
PSD.

Fact 2.3.8. Let A be a PSD matrix defined in Equation (2.5). Then, Sc(A)C is also
PSD.

The following fact provides a useful matrix identity that factorizes the matrix A in
terms of its submatrices and Schur complement.

Fact 2.3.9. Let A be a PSD matrix defined in Equation (2.5). Then,

A =

[
I

A(C,F)A(F, F)† I

] [
A(F, F)

Sc(A)C

] [
I A(F, F)†A(F,C)

I

]
.

In the special case where A = BB⊤, the Schur complement Sc(A)C can be expressed
directly in terms of B .

Fact 2.3.10. Let A be a PSD matrix defined in Equation (2.5). Let A = BB⊤, and we

decompose B =

[
BF

BC

]
accordingly. Then,

Sc(A)C = BCΠKer(BF)B
⊤
C ,

where ΠKer(BF) is the projection onto the kernel of BF : ΠKer(BF) = I−B⊤
F

(
BFB

⊤
F

)†
BF .

22 2. Preliminaries

Chapter 3

Hardness Results for
Two-Commodity Flow

This chapter is based on [DKZ22] and focuses on proving Theorem 1.4.1. Here in Sec-
tion 3.5 and 3.6, we improve the proof structure from the published version [DKZ22],
making it modular and streamlined. Furthermore, we introduce a unified linear program-
ming (LP) transformation framework in Section 3.7. This framework provides a unified
characterization and a systematic analysis of various reduction steps.

3.1 Prior Works

Previous work by Kyng and Zhang [KZ17] had shown that fast algorithms for multi-
commodity flow were unlikely to arise from combining interior point methods with special-
purpose linear equation solvers. Concretely, they showed that the linear equations that
arise in interior point methods for multi-commodity flow are as hard to solve as arbitrary
linear equations. This ruled out algorithms following the pattern of the known fast
algorithms for high-accuracy single-commodity flow problems. However, it left open the
broader question if some other families of algorithms could succeed. We now show that,
in general, a separation between multi-commodity flow and linear programming is not
possible.

Our paper follows the outline of Itai’s polynomial-time reduction of a linear program to
a 2-commodity flow problem. In addition, it is also inspired by recent works on hardness
for structured linear equations [KZ17] and packing/covering LPs [KWZ20], which focused
on obtaining nearly-linear time reductions in related settings. These works in turn were
motivated by the last decade’s substantial progress on fine-grained complexity for a range
of polynomial time solvable problems, e.g. see [WW18]. Also notable is the result by
Musco et al. [Mus+19] on hardness for matrix spectrum approximation.

3.2 Our Contributions

The many successes in developing high-accuracy algorithms for single-commodity flow
problems highlight an important open question: Can multi-commodity flow be solved to
high accuracy faster than general linear programs? We rule out this possibility by proving
that any linear program (assuming it is polynomially bounded and has integer entries)
can be encoded as a multi-commodity flow problem in nearly-linear time. This implies

23

24 3. Hardness Results for Two-Commodity Flow

that any improvement in the running time of (high-accuracy) algorithms for sparse multi-
commodity flow problems would directly translate to a faster algorithm for solving sparse
linear programs to high accuracy, with only a polylogarithmic increase in running time.

Theorem 1.4.1 demonstrates several key improvements over Itai’s original polynomial
time reduction from LP to 2CF. Firstly, while Itai produced a 2CF with the number of
edges on the order of Θ

(
N2 log2X

)
, where N is the number of non-zeros and X is the

magnitude of the largest entry in the original LP, we show that an improved gadget can
reduce this to O (N logX). Thus, in the case of polynomially bounded linear programs,
where logX = O(logN), we get only a polylogarithmic multiplicative increase in the

number of non-zero entries from N to Õ(N), whereas Itai had an increase in the number

of non-zeros by a factor Õ(N), i.e., from N to Õ(N2).

Secondly, Itai used very large graph edge capacities that require O
(
(N logX)1.01

)
many bits per edge, letting the capacities grow exponentially given an LP with polyno-
mially bounded entries. We show that when the feasible polytope radius R is bounded,
we can ensure capacities remain a polynomial function of the initial parameters N,R,
and X. In the important case of polynomially bounded linear programs, this means the
capacities stay polynomially bounded.

Thirdly, while Itai only analyzed the chain of reductions under the case with exact
solutions, we generalize the analysis to the case with approximate solutions by establishing
an error analysis along the chain of reductions. We show that the error only grows
polynomially during the reduction.

Finally, we introduce a framework that unifies all steps in the reduction chain. Rather
than analyzing each reduction individually, this framework offers a unified characteriza-
tion of problem reductions and enables a systematic approach to analyzing the correctness
and error propagation of these reductions. It serves not only as a powerful tool for val-
idating existing reductions but also as a valuable guide for designing and verifying new
reduction steps within the LP realm.

3.3 Problem Definitions

This section introduces the intermediate problems that form our nine-step chain of re-
duction algorithms. We group these problems into two categories for clarity: the Algebra
Space, which includes linear programming and linear equation problems, and the Flow
Space, which involves flow routing in graphs. We also define the error notions used to
evaluate approximate solutions in both domains. Before delving into the formal problem
definitions, we begin by discussing the key assumptions involved.

3.3.1 Discussion of the Problem Assumptions

Polynomially-Bounded LP. Current research on fast algorithms for solving linear
programs generally relies on assuming bounds on: (1) the size of the program entries,
and (2) the norm of all feasible solutions. Generally, the algorithm running time depends
logarithmically on these quantities, and hence to make these factors negligible, entry
size and feasible solution norms are assumed to be polynomially bounded, for example
in [CLS21; Jia+21]. We will refer to a linear program satisfying these assumptions as
polynomially bounded. More precisely, we say a linear program with N non-zero coeffi-
cients is polynomially bounded if it has coefficients in the range [−X,X] and ∥x∥1 ≤ R

3. Hardness Results for Two-Commodity Flow 25

for all feasible x (i.e., the polytope of feasible solutions has radius of R in ℓ1 norm), and
X,R ≤ O(N c) for some constant c. In fact, if there exists a feasible solution x satisfying
∥x∥1 ≤ R, then we can add a constraint ∥x∥1 ≤ R to the LP (which can be rewritten as
linear inequality constraints) so that in the new LP, all feasible solutions have ℓ1 norm
at most R. This only increases the number of non-zeros in the LP by at most a constant
factor.

Interior Point Methods and Reductions with Fixed Point Arithmetic. Mod-
ern fast interior point methods for linear programming, such as [CLS21], are analyzed
in the RealRAM model. In order to implement these algorithms using fixed point arith-
metic with polylogarithmic bit complexity per number, instead of RealRAM, additional
assumptions are required. For example, this class of algorithms relies on computing ma-
trix inverses, and these must be approximately representable using polylogarithmic bit
complexity per entry. This is not possible, if the inverses have exponentially large entries,
which may occur even in polynomially bounded linear programs. For example, consider a
linear program feasibility problem {Ax ≤ b,x ≥ 0}, with constraint matrix A ∈ R2n×2n

given by

A(i, j) =



1 if i < n and i = j

−2 if i < n and i+ 1 = j

2 if i ≥ n and i = j

−1 if i ≥ n and i+ 1 = j

0 o.w.

.

Such a linear program is polynomially bounded for many choices of b, e.g., b = e2n.
Unfortunately, for the vector x ∈ R2n given by

x (i) =

{
2−i−1 if i ≤ n

0 o.w.
,

we have Ax = 2−nen, and from this one can see that A−1 must have entries of size
at least Ω(2n/n). This will cause algorithms such as [CLS21] to perform intermediate
calculations with n bits per number, increasing the running time by a factor roughly n.

Modern interior point methods can be translated to fixed precision arithmetic with
various different assumptions leading to different per entry bit complexity (see [CLS21]
for a discussion of one standard sufficient condition). Furthermore, if the problem has
polynomially bounded condition number (when appropriately defined), then we expect
that polylogarithmic bit complexity per entry should suffice, at least for highly accu-
rate approximate solutions, by relying on fast stable numerical linear algebra [DDH07],
although we are not aware of a complete analysis of this translation.

If a linear program with integer entries is solved to sufficiently small additive error,
the approximate solution can be converted into an exact solution, e.g. see [Ren88; LS14;
CLS21] for a discussion of the necessary precision and for a further discussion of numerical
stability properties of interior point methods. Polynomially bounded linear programs with
integer coefficients may still require exponentially small additive error for this rounding
to succeed.

We give a reduction from general linear programming to 2-commodity flow, and like
[CLS21], we assume the program is polynomially bounded to carry out the reduction.
We also use an additional assumption, namely that the linear program is written using

26 3. Hardness Results for Two-Commodity Flow

integral entries.1 We do not make additional assumptions about polynomially bounded
condition number of the problem. This means we can apply our reduction to programs
such as the one above, despite [CLS21] not obtaining a reasonable running time on such
programs using fixed point arithmetic.

Our analysis of our reduction uses the RealRAMmodel like [CLS21; Jia+21] and other
modern interior point method analysis, however, it should be straightforward to translate
our reduction and error analysis to fixed point arithmetic with polylogarithmically many
bits, because all our mappings are simple linear transformations, and we never need to
compute or apply a matrix inverse.

Rounding Linear Programs to Have Integer Entries. It is possible to give some
fairly general and natural sufficient conditions for when a polynomially bounded linear
program can be rounded to have integral entries, one example of this is having a polyno-
mially bounded Renegar’s condition number. Renegar introduced this condition number
for linear programs in [Ren95]. For a given linear program, suppose that perturbing the
entries of the program by at most δ each does not change the feasibility of the the linear
program, and let δ∗ be the largest such δ. Let U denote the maximum absolute value
of entries in the linear program. Then κ = U/δ∗ is Renegar’s condition number for the
linear program.

Suppose we are given a polynomially bounded linear program max{c⊤x : Ax ≤
b,x ≥ 0} (also referred to as (A, b, c)), with polytope radius at most R, and Renegar’s
condition number κ is also bounded by a polynomial. We wish to compute a vector x ≥ 0
with an ϵ additive error on each constraint and in the optimal value. We can reduce this
problem, for instance, (A, b, c) to a polynomially bounded linear program instance with

integral input numbers. Specifically, we round the entries of A down to Ã and those of
b, c up to b̃, c̃ all by at most min{ ϵ

3R
, U
κR
} such that each entry of Ã, b̃, c̃ only needs a

logarithmic number of bits. Suppose x̃ is a solution to (Ã, b̃, c̃) with ϵ
3
additive error on

each constraint and the optimal value. Then,

Ax̃ = Ãx̃ + (A− Ã)x̃ ≤ b + ϵ1,

c⊤x̃ ≥ c̃⊤x̃ ∗ − 2ϵ

3
.

Here, 1 is the all-one vector, x̃ ∗ is an optimal solution to (Ã, b̃, c̃). In addition, the

optimal value of (Ã, b̃, c̃) is greater than or equal to that of (A, b, c). So, x̃ is a solution

to (A, b, c) with ϵ additive error as desired. Since each entry of Ã, b̃, c̃ has a logarithmic
number of bits, we can scale all of them to polynomially bounded integers without chang-
ing the feasible set and the optimal solutions. Thus we see that if we restrict ourselves to
polynomially linear programs with polynomially bounded Renegar’s condition number,
and we wish to solve the program with small additive error, we can assume, without loss
of generality, that the program has integer coefficients.

3.3.2 Problems in Algebra Space

For the convenience of our reduction, we define linear programming as a “decision” prob-
lem. We can solve the optimization problem max{c⊤x : Ax ≤ b,x ≥ 0} by binary

1W.l.o.g., by scaling, this is the same as assuming the program is written with polynomially bounded
fixed precision numbers of the form k/D where k is an integer, and D is an integral denominator shared
across all entries, and both k and D are polynomially bounded.

3. Hardness Results for Two-Commodity Flow 27

searching its optimal value via the decision problem.

Definition 3.3.1 (Linear Programming (lp)). Given a matrixA ∈ Zm×n, vectors b ∈ Zm

and c ∈ Zn, an integer K, and R ≥ max{1,max{∥x∥1 : Ax ≤ b,x ≥ 0}}, we refer to
the lp problem for (A, b, c, K,R) as the problem of finding a vector x ∈ Rn

≥0 satisfying

Ax ≤ b and c⊤x ≥ K

if such an x exists and returning “infeasible” otherwise.

We will reduce linear programs to linear equations with non-negative variables (LEN),
and then to linear equations with non-negative variables and small integer coefficients (k-
LEN).

Definition 3.3.2 (Linear Equations with Non-negative Variables (len)). Given A ∈
Zm×n, b ∈ Zm, and R ≥ max{1,max{∥x∥1 : Ax = b,x ≥ 0}}, we refer to the len
problem for (A, b, R) as the problem of finding a vector x ∈ Rn

≥0 satisfying Ax = b if
such an x exists and returning “infeasible” otherwise.

Definition 3.3.3 (k-LEN (k-len)). The k-len problem is an len problem (A, b, R)
where the entries of A are integers in [−k, k] for some given k ∈ Z>0.

We employ the following additive error notion. We append a letter “A” to each
problem name to denote its approximation version, e.g., LP Approximate Problem is
abbreviated to LPA.

Definition 3.3.4 (Error Notions in the Algebra Space). We always require x ≥ 0. In
addition,

• The inequality constraint Ax ≤ b is relaxed to Ax − b ≤ ϵ1, where 1 is the all-1
vector;

• The equality constraint Ax = b is relaxed to ∥Ax − b∥∞ ≤ ϵ.

3.3.3 Problems in Flow Space

A flow network is a directed graph G = (V,E), where V is the set of vertices and

E ⊆ V × V is the set of edges, together with a vector of edge capacities u ∈ Z|E|
>0 that

upper bounds the amount of flow passing each edge. A 2-commodity flow network is a
flow network together with two source-sink pairs si, ti ∈ V for each commodity i ∈ {1, 2}.

Definition 3.3.5 (Capacity Constraints). Given a 2-commodity flow network, we say
the flows f 1, f 2 ≥ 0 satisfy capacity constraints if

f 1(e) + f 2(e) ≤ u(e), ∀e ∈ E.

Definition 3.3.6 (Flow Conservation Constraints). Given a 2-commodity flow network,
we say the flows f 1, f 2 ≥ 0 satisfy flow conservation constraints if∑

u:(u,v)∈E

f i(u, v) =
∑

w:(v,w)∈E

f i(v, w), ∀i ∈ {1, 2}, v ∈ V \ {si, ti}.

28 3. Hardness Results for Two-Commodity Flow

Given a 2-commodity flow network (G = (V,E),u , s1, t1, s2, t2), a feasible 2-commodity

flow is a pair of flows f 1, f 2 ∈ R|E|
≥0 that satisfies both the capacity and flow conservation

constraints.
In particular, in a 1-commodity flow network, capacity constraints refer to 0 ≤

f (e) ≤ u(e), ∀e ∈ E; and flow conservation constraints become
∑

u:(u,v)∈E f (u, v) =∑
w:(v,w)∈E f (v, w), v ∈ V \ {s, t}. A feasible 1-commodity flow is a flow f ∈ R|E|

≥0 that
satisfies both the capacity and flow conservation constraints.

Similar to the definition of LP, we define 2-commodity flow problem as a decision
problem. The corresponding optimization problem can be solved by reducing it to a
sequence of decision problems.

Definition 3.3.7 (2-Commodity Flow Problem (2cf)). Given a 2-commodity flow
network (G,u , s1, t1, s2, t2) together with R ≥ 0, we refer to the 2cf problem for
(G,u , s1, t1, s2, t2, R) as the problem of finding a feasible 2-commodity flow f 1, f 2 ≥ 0
satisfying

F1 + F2 ≥ R

if such flows exist and returning “infeasible” otherwise.

A closely related flow problem to 2cf is 2cfr, which imposes an additional require-
ment that a specific amount of flow must be routed for each commodity.

Definition 3.3.8 (2-Commodity Flow with Required Flow Amount (2cfr)). Given a
2-commodity flow network (G,u , s1, t1, s2, t2) together with R1, R2 ≥ 0, we refer to the
2cfr for (G,u , s1, t1, s2, t2, R1, R2) as the problem of finding a feasible 2-commodity flow
f 1, f 2 ≥ 0 satisfying

F1 ≥ R1, F2 ≥ R2

if such flows exist and returning “infeasible” otherwise.

Reducing lp to 2cf needs to go through a sequence of variants of flow problems with
additional constraints beyond capacity and flow conservation constraints.

Definition 3.3.9 (Homologous Flow Constraints). Given a collection of disjoint subsets
of edgesH = {H1, . . . , Hh} in a 1-commodity flow network, we say the flow f ≥ 0 satisfies
homologous flow constraints on H if

f (e1) = f (e2), ∀e1, e2 ∈ Hk, ∀Hk ∈ H.

If |Hk| = 2 for all Hk ∈ H, we say f satisfy pairwise homologous flow constraints.

Definition 3.3.10 (Fixed Flow Constraints). Given a set F ⊆ E in a 2-commodity flow
network, we say the flows f 1, f 2 ≥ 0 satisfy fixed flow constraints on F if

f 1(e) + f 2(e) = u(e), ∀e ∈ F.

Similarly, given a set F ⊆ E in a 1-commodity flow network, we say the flow f ≥ 0
satisfies fixed flow constraints on F if

f (e) = u(e), ∀e ∈ F.

3. Hardness Results for Two-Commodity Flow 29

Definition 3.3.11 (Selective Flow Constraints). Given two disjoint subsets of edges
S1, S2 ⊆ E in a 2-commodity flow network, we say the flows f 1, f 2 ≥ 0 satisfy selective
flow constraints on S1 ∪ S2 if

f i(e) > 0, f ī = 0, ∀e ∈ Si, i ∈ {1, 2}, ī ̸= i.

Intermediate problems are defined with some combinations of the above additional
flow constraints.

Definition 3.3.12 (Fixed Homologous Flow Problem (fhf)). Given a flow network with
a single source-sink pair (G,u , s, t) together with a collection of disjoint subsets of edges
H = {H1, . . . , Hh} and a subset of edges F ⊆ E such that F is disjoint from all the sets
in H, we refer to the fhf problem for (G,F,H,u , s, t) as the problem of finding a feasible
flow f ≥ 0 such that f satisfies the homologous constraints on H, and satisfies fixed flow
constraints on F , if such flows exist, and returning “infeasible” otherwise.

Definition 3.3.13 (Fixed Pair Homologous Flow Problem (fphf)). An fphf is an fhf
problem (G,F,H,u , s, t) where every set in H has size 2.

Definition 3.3.14 (Selective Fixed Flow Problem (sff)). Given a 2-commodity network
(G,u , s1, t1, s2, t2) together with three edge sets F, S1, S2 ⊆ E, we refer to the sff problem
for (G,F, S1, S2,u , s1, t1, s2, t2) as the problem of finding a feasible 2-commodity flow
f 1, f 2 ≥ 0 such that f 1, f 2 satisfy the selective flow constraints on S1, S2, and satisfy the
fixed flow constraints on F , if such flows exist, and returning “infeasible” otherwise.

Definition 3.3.15 (2-Commodity Fixed Flow Problem (2cff)). Given a 2-commodity
flow network (G,u , s1, t1, s2, t2) together with a subset of edges F ⊆ E, we refer to the
2cff problem for the tuple (G,F,u , s1, t1, s2, t2) as the problem of finding a feasible 2-
commodity flow f 1, f 2 ≥ 0 which also satisfies the fixed flow constraints on F if such
flows exist and returning “infeasible” otherwise.

Now, we define error notions for the above flow problems.

Definition 3.3.16 (Error Notions in the Flow Space). We always require flows f 1, f 2 ≥
0.2 In addition,

1. Error in congestion.

• Relax the capacity constraints: f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E;

• Relax the fixed flow constraints: |f 1(e) + f 2(e)− u(e)| ≤ ϵ, ∀e ∈ F .

2. Error in demand.

• Relax the flow conservation constraints for vertices other than the source and
sink:∣∣∣∣∣∣

∑
u:(u,v)∈E

f i(u, v)−
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2}.

2Let f 2 = 0 in 1-commodity flow problems.

30 3. Hardness Results for Two-Commodity Flow

• Relax the amount of flow requirements for source and sink nodes:∑
w:(si,w)∈E

f i(si, w) ≥ Fi − ϵ,
∑

u:(u,ti)∈E

f i(u, ti) ≥ Fi − ϵ, i ∈ {1, 2}.

3. Error in selection.
Relax the selective flow constraints: f ī(e) ≤ ϵ, ∀e ∈ Si, ī ̸= i.

4. Error in (pairwise) homology.
Relax the (pairwise) homologous flow constraints: |f (e1)− f (e2)| ≤ ϵ, ∀e1, e2 ∈
Hk, Hk ∈ H.

We remark that the error notions in the flow space are essentially equivalent to those
in the algebra space, as defined in Definition 3.3.4. For instance, relaxing capacity con-
straints corresponds to relaxing inequality constraints, while relaxing flow conservation
constraints corresponds to relaxing equality constraints.

3.4 Main Results

Before formally stating our main results, we first formalize the approximate versions of
lp and 2cf by applying the error notions defined earlier in Definition 3.3.4 and 3.3.16.

Definition 3.4.1 (LP Approximate Problem (lpa)). An lpa instance is given by an
lp instance (A, b, c, K,R) and an error parameter ϵ ∈ [0, 1], which we collect in a tuple
(A, b, c, K,R, ϵ). We say an algorithm solves the lpa problem, if, given any lpa instance,
it returns a vector x ≥ 0 such that

c⊤x ≥ K − ϵ,

Ax ≤ b + ϵ1,

where 1 is the all-1 vector, or it correctly declares that the associated lp instance is
infeasible.

Definition 3.4.2 (2CF Approximate Problem (2cfa)). A 2cfa instance is given by a
2cf instance (G,u , s1, t1, s2, t2, R) and an error parameter ϵ ∈ [0, 1], which we collect in
a tuple (G,u , s1, t1, s2, t2, R, ϵ). We say an algorithm solves the 2cfa problem, if, given
any 2cfa instance, it returns a pair of flows f 1, f 2 ≥ 0 that satisfies

f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E, (error in congestion)∣∣∣∣∣∣
∑

u:(u,v)∈E

f i(u, v)−
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2}, (error in demand)

∣∣∣∣∣∣
∑

w:(si,w)∈E

f i(si, w)− Fi

∣∣∣∣∣∣ ≤ ϵ,

∣∣∣∣∣∣
∑

u:(u,ti)∈E

f i(u, ti)− Fi

∣∣∣∣∣∣ ≤ ϵ, i ∈ {1, 2},

(error in demand)

where F1+F2 = R;3 or it correctly declares that the associated 2cfinstance is infeasible.

3If we encode 2cf as an lp instance, and approximately solve the lp with at most ϵ additive error.
Then, the approximate solution also agrees with the error notions of 2cf, except that we get F1 + F2 ≥
R − ϵ instead of F1 + F2 ≥ R. This inconsistency can be eliminated by setting ϵ′ = 2ϵ, and slightly
adjusting F1, F2 to F ′

1, F
′
2 such that F ′

1 + F ′
2 ≥ R. This way, we obtain an approximate solution to 2cf

with at most ϵ′ additive error.

3. Hardness Results for Two-Commodity Flow 31

With the approximate versions of LP and 2CF defined, we now present the main
result formally, which provides a fine-grained complexity on the problem size and error
tolerance in the reduction from lpa to 2cfa.

Theorem 3.4.3 (Main Theorem). Given an lpa instance (A, b, c, K,R, ϵlp) where A ∈
Zm×n, b ∈ Zm, c ∈ Zn, K ∈ Z, ϵlp ≥ 0 and A has nnz (A) non-zero entries, we can reduce
it to a 2cfa instance (G = (V,E),u , s1, t1, s2, t2, R

2cf , ϵ2cf) in time O(nnz(A) logX)
where X = X(A, b, c, K), such that

|V |, |E| = O(nnz(A) logX),

∥u∥max , R
2cf = O(nnz3(A)RX log2X),

ϵ2cf = Ω

(
1

nnz6(A)RX log6X

)
ϵlp.

If the lp instance (A, b, c, K,R) has a solution, then the 2cf instance
(G2cf ,u2cf , s1, t1, s2, t2, R

2cf) has a solution. Furthermore, if f 2cf is a solution to the
2cfa (2cf) instance, then in time O(nnz(A) logX), we can compute a solution x to the
lpa (lp, respectively) instance, where the exact case holds when ϵ2cf = ϵlp = 0.

Our main theorem immediately implies the following corollary.

Corollary 3.4.4. If we can solve any 2cfa instance (G = (V,E),u , s1, t1, s2, t2, R
2cf , ϵ)

in time O
(
|E|c poly log

(
∥u∥1
ϵ

))
for some small constant c ≥ 1, then we can solve any

lpa instance (A, b, c, K,R, ϵ) in time O
(
nnzc(A) poly log

(
nnz(A)RX(A,b,c,K)

ϵ

))
.

3.5 Algebra Space

3.5.1 Overview

In this section, we describe the general process of reduction and solution mapping in
the algebra space. Consider the task of reducing an instance A of the form {AAxA =
bA,xA ≥ 0} to another instance B, defined as {ABxB = bB,xB ≥ 0}. We analyze the
reductions for both the exact and approximate cases.

Exact Case. The reduction algorithms are designed such that A has a feasible solution
if and only if the reduced instance B also has a feasible solution. It implies that instance
A is infeasible if and only if B is infeasible.

Reduction:
Given AA and bA, while the reduction algorithm to construct AB and bB is
problem-specific, the corresponding xB is constructed by introducing auxiliary vari-
ables x aux such that:

xB =

[
xA

x aux

]
.

We keep track of the increase in the problem size and problem magnitude for the
reduction algorithm.

32 3. Hardness Results for Two-Commodity Flow

Solution mapping:
The solution mapping algorithm is the same for all reduction steps, with a straight-
forward runtime analysis: If a solver returns a feasible solution xB for instance B,
then we extract the appropriate subset of entries xA from xB in time O(dim(xA))
and return xA as the solution to the instance A; if the solver returns “infeasible”
for instance B, then we return “infeasible” for instance A as well.

Approximate Case. For approximate problems, both the reduction and solution map-
ping algorithms are applied in the same way. However, there is a key difference from the
exact case: the approximate problem does not require to provide a certificate of “infea-
sibility”, but never incorrectly asserts “infeasibility”.

In addition to tracking the increase in problem size and magnitude, we perform an
error analysis to monitor error propagation. Specifically, let (xB, ϵB) be an approximate
solution to instance B with error ϵB, and let (xA, ϵA) be an approximate solution to
instance A with error ϵA, obtained by applying the solution mapping algorithm. Our
goal is to analyze how ϵA increases compared to ϵB. We remark that when ϵA, ϵB = 0,
the statement for the approximate case is reduced to the exact case.

In the remainder of this section, we describe each reduction step in algebra space in
detail. For each step, we first describe the reduction algorithm that is used to construct
AB, bB fromAA, bA. We then present a lemma for the exact case, proving the correctness
of the reduction algorithm while tracking the problem size and magnitude. And finally
we extend the lemma for the approximate case, analyzing how errors propagate through
the solution mapping algorithm.

3.5.2 LP(A) to LEN(A): Reducing Inequalities to Equalities

Given an lp instance (A, b, c, K,R) where R ≥ max{1,max{∥x∥1 : Ax ≤ b,x ≥ 0}},
we want to compute a vector x ≥ 0 s.t.

c⊤x ≥ K, Ax ≤ b.

To reduce it to an len instance, we introduce x aux as slack variables

[
s
α

]
≥ 0, and

construct

Ã =

[
c⊤ 0 −1
A I 0

]
, x̃ =

xs
α

 , b̃ =

[
K
b

]
. (3.1)

This defines an len instance (Ã, b̃, R̃) where R̃ = max{1,max{∥x̃∥1 : Ãx̃ = b̃, x̃ ≥ 0}}.

Lemma 3.5.1 (lp to len). Given an lp instance (A, b, c, K,R) with N non-zeros and
magnitude X, we can construct, in O(N) time, an len instance (Ã, b̃, R̃) with Ñ non-
zeros and magnitude X̃ such that

Ñ = O(N), R̃ = O(NRX), X̃ = O(X).

If the lp instance has a solution, then the len instance has a solution.

3. Hardness Results for Two-Commodity Flow 33

Proof. Based on the reduction construction shown in Eq. (3.1), it is obvious for the
linear reduction time and Ñ = O(N), X̃ = O(X). Regarding the radius of polytope
R̃ = max{1,max{∥x̃∥1 : Ãx̃ = b̃, x̃ ≥ 0}}, we have

∥x̃∥1 ≤ ∥x∥1 + ∥x
aux∥1 by triangle inequality

≤ ∥x∥1 + ∥Ax − b∥1 +
∥∥c⊤x −K

∥∥
1

≤ R +N(∥A∥max ∥x∥1 + ∥b∥max + ∥c∥max ∥x∥1 + |K|)
≤ O(NRX).

If x is a solution to the lp instance, we can derive a solution x̃ = (x⊤, s⊤, α)⊤ to the
len instance by setting

s = b −Ax , α = c⊤x −K.

Now we extend Lemma 3.5.1 for the exact case to the approximate case.

Lemma 3.5.2 (lpa to lena). Given an lpa instance (A, b, c, K,R, ϵlp) with N non-
zeros and magnitude X, we can reduce it to an lena instance (Ã, b̃, R̃, ϵle) with Ñ
non-zeros and magnitude X̃, by letting

ϵle = ϵlp,

and using Lemma 3.5.1 to construct an len instance (Ã, b̃, R̃) from the lp instance
(A, b, c, K,R). If x̃ is a solution to the lena (or len) instance, then in time O(N), we
can compute a solution x to the lpa (or lp respectively) instance, where the exact case
holds when ϵle = ϵlp = 0.

Proof. If x̃ =
[
x⊤, s⊤, α

]⊤
is an approximate solution to the lena instance with error

ϵle, according to error notions in algebra space (Definition 3.3.4),∣∣c⊤x − α−K
∣∣ ≤ ϵle,

|Ax + s − b| ≤ ϵle1.

Taking one direction of the absolute value inequalities,

c⊤x ≥ α +K − ϵle ≥ K − ϵle,

Ax ≤ −s + b + ϵle1 ≤ b + ϵle1,

As we set in the reduction that ϵle = ϵlp, x is a solution to the lpa instance
(A, b, c, K,R, ϵlp).

3.5.3 LEN(A) to 2-LEN(A): Reducing Integer Coefficients to
{0,±1,±2}

In this section, we show the reduction from an len instance (Ã, b̃, R̃) to a 2-len instance
(Ā, b̄, R̄), where the coefficients of Ā are in {0,±1,±2}. The reduction is based on bitwise
decomposition. We illustrate the reduction algorithm with a concrete example.

5x 1 + 3x 2 − 7x 3 = −1

34 3. Hardness Results for Two-Commodity Flow

⇓

(20 + 22)x 1 + (20 + 21)x 2 − (20 + 21 + 22)x 3 = −20

⇓

(x 1 + x 2 − x 3)2
0 + (x 2 − x 3)2

1 + (x 1 − x 3)2
2 = −1 · 20

It can be decomposed to 3 linear equations, together with carry terms (ci − d i), where
ci,d i ≥ 0:

x 1 + x 2 − x 3 − 2(c0 − d 0) = −1,
x 2 − x 3 + (c0 − d 0)− 2(c1 − d 1) = 0,

x 1 − x 3 + (c1 − d 1) = 0.

(3.2)

Moreover, since ci,d i can be arbitrarily large, we also impose an upper bound for carry
variables ci,d i ≤ X̄, where X̄ will be specified shortly.

Finally, we introduce slack variables s ≥ 0 to reduce inequalities to equalities:[
c
d

]
+ s = X̄1.

We repeat the above procedure for all equations in len. Notice that in this step, x aux

is composed of c,d , s .

Lemma 3.5.3 (len to 2-len). Given an len instance (Ã, b̃, R̃) with Ñ non-zeros and

magnitude X̃, we can construct, in O
(
Ñ log X̃

)
time, a 2-len instance (Ā, b̄, R̄) with

N̄ non-zeros and magnitude X̄ such that

N̄ = O(Ñ log X̃), R̄ = O(ÑR̃ log X̃), X̄ = O(R̃).

If the len instance has a solution, then the 2-len instance has a solution.

Proof. By construction, for each equation in len , it is decomposed into at most O(log X̃)
equations so that the number of non-zero entries is increased by a factor O(log X̃). There-
fore, the reduction can be conducted in O(Ñ log X̃) time and N̄ = O(Ñ log X̃).

The key to bounding the radius of polytope R̄ and magnitude X̄ is to analyze the
magnitude of carry terms. For an arbitrary equation Ã(q)x̃ = b̃(q), denote the introduced

carry terms of the decomposed equations as cq,d q ∈ RNq

≥0, where Nq ≤ O(log X̃) denotes
the number of decomposed equations corresponding to original equation. Starting from
the lowest bit, we have

2 |cq(0)− d q(0)| ≤ 1 + ∥x̃∥1 = O(R̃).

Then for the second lowest bit,

2 |cq(1)− d q(1)| ≤ 1 + ∥x̃∥1 + |cq(0)− d q(0)| =
(
1 +

1

2

)
O(R̃).

Repeating the same until the second-highest bit,

2 |cq(Nq − 1)− d q(Nq − 1)| ≤
(
1 +

1

2
+ · · ·+ 1

2Nq−1

)
O(R̃) = O(R̃).

3. Hardness Results for Two-Commodity Flow 35

Therefore, it suffices to bound c,d by O(R̃), thus the same for the slack variables s ≤
O(R̃).

Now, we can bound the magnitude of 2-lena by X̄ = O(R̃) as
∥∥Ā∥∥

max
= 2 and∥∥b̄∥∥

max
≤ O(R̃). To bound the radius of the polytope, we have

∥x̄∥1 ≤ ∥x̃∥1 + ∥c∥1 + ∥d∥1 + ∥s∥1 ≤ R̃ +O(Ñ log X̃)× ∥c∥max ≤ O(ÑR̃ log X̃).

Finally, we describe how to construct a solution to 2-len given a solution to len.
If x̃ is a feasible solution to the len instance such that Ãx̃ = b̃, we are able to derive
a solution x̄ = (x̃⊤, c⊤,d⊤, s⊤)⊤ to the 2-len instance. More concretely, we plug in x̃
into 2-len, and for each group of equations, we start from the lowest bit and compute
the smallest nonnegative c0,d 0. Using forward substitution, we can compute all c,d . In
the end, given c and d , s can be computed as well.

Lemma 3.5.4 (lena to 2-lena). Given an lena instance (Ã, b̃, R̃, ϵle) with Ñ non-
zeros and magnitude X̃, we can reduce it to an 2-lena instance (Ā, b̄, R̄, ϵ2le) with N̄
non-zeros and magnitude X̄ by letting

ϵ2le = Ω

(
1

X̃

)
ϵle,

and using Lemma 3.5.3 to construct a 2-len instance (Ā, b̄, R̄) from the len instance
(Ã, b̃, R̃). If x̄ is a solution to the 2-lena (or 2-len) instance, then in time O(ñ), we
can compute a solution x̃ to the lena (or len respectively) instance, where the exact
case holds when ϵ2le = ϵle = 0.

Proof. Suppose x̄ =
[
x̃⊤, c⊤,d⊤, s⊤

]⊤
is an approximate solution to the 2-lena instance.

We consider an arbitrary equation Ã(q)x̃ = b̃(q) in len. By Definition 3.3.4, for the
corresponding equations in 2-lena, for any ith bit,∣∣Āq(i)x̄ − b̄q(i)

∣∣ ≤ ϵ2le.

The original equation Ã(q)x̃ = b̃(q) in lena can be recovered by combining all the
corresponding bit equations in 2-lena as follows:

Ã(q)x̃ =

Nq∑
i=0

2i × Āq(i)
⊤x̄ , b̃(q) =

Nq∑
i=0

2i × b̄q(i).

Hence, ∣∣∣Ã(q)x̃ − b̃(q)
∣∣∣ = Nq∑

i=0

2i ×
∣∣Āq(i)x̄ − b̄q(i)

∣∣ ≤ O(X̃) · ϵ2le.

3.5.4 2-LEN(A) to 1-LEN(A): Reducing Coefficients from ±2
to ±1

The reduction from a 2-len instance (Ā, b̄, R̄) to a 1-len instance (Â, b̂, R̂) is relatively
straightforward: For each variable x̄ (j) that has a ±2 coefficient, we introduce a new
variable x̄ ′(j), replace every ±2x̄ (j) with ±(x̄ (j)+x̄ ′(j)), and add an additional equation
x̄ (j)− x̄ ′(j) = 0.

36 3. Hardness Results for Two-Commodity Flow

Lemma 3.5.5 (2-len to 1-len). Given a 2-len instance (Ā, b̄, R̄) with N̄ non-zeros
and magnitude X̄, we can construct, in O(N̄) time, a 1-len instance (Â, b̂, R̂) with N̂
non-zeros and magnitude X̂ such that

N̂ = O(N̄), R̂ = O(R̄), X̂ = O(X̄).

If the 2-len instance has a solution, then the 1-len instance has a solution.

Proof. By construction, we only make changes to each ±2 coefficient, which will generate
four non-zero entries, hence N̂ = O(N̄) and both R̂ and X̂ will remain the same.

If x̄ is a solution to the 2-len instance such that Āx̄ = b̄, to derive a solution
x̂ = (x̄⊤, (x̄ ′)⊤)⊤ to the 1-len instance, we split each x̄ (j) having a ±2 coefficient in Ā
into x̄ ′(j), x̄ (j) such that x̄ ′(j) = x̄ (j). We can check that x̂ is a solution to the 1-len
instance.

Lemma 3.5.6 (2-lena to 1-lena). Given a 2-lena instance (Ā, b̄, R̄) with N̄ non-zeros
and magnitude X̄, we can reduce it to a 1-lena instance (Â, b̂, R̂) with N̂ non-zeros and
magnitude X̂ by letting

ϵ1le = Ω

(
1

N̄

)
ϵ2le,

and using Lemma 3.5.5 to construct a 1-len instance (Â, b̂, R̂) from the 2-len instance
(Ā, b̄, R̄). If x̂ is a solution to the 1-lena (1-len) instance, then in time O(n̄), we can
compute a solution x̄ to the 2-lena (2-len, respectively) instance, where the exact case
holds when ϵ1le = ϵ2le = 0.

Proof. Suppose x̂ is an approximate solution to the 1-lena instance. Then for any pair
of (x̄ (j), x̄ ′(j)), we have

|x̄ (j)− x̄ ′(j)| ≤ ϵ1le,

and for any equations in 1-lena, we have∣∣∣Â(q)x̂ − b̂(q)
∣∣∣ ≤ ϵ1le.

Therefore, for any equation in 2-lena, assume Sq is the set of indices with coefficients
±2, then

Ā(q)x̄ =
∑
k/∈Sq

Ā(q, k)x̄ (k) +
∑
k∈Sq

(±2)x̄ (k)

=
∑
k/∈Sq

Ā(q, k)x̄ (k) +
∑
k∈Sq

± ((x̄ (k) + x̄ ′(k)) + (x̄ (k)− x̄ ′(k)))

= Â(q)x̂ +
∑
k∈Sq

± (x̄ (k)− x̄ ′(k)) .

Therefore,

∣∣Ā(q)x̄ − b̄(q)
∣∣ =

∣∣∣∣∣∣Â(q)x̂ − b̂(q) +
∑
k∈Sq

± (x̄ (k)− x̄ ′(k))

∣∣∣∣∣∣
≤
∣∣∣Â(q)x̂ − b̂(q)

∣∣∣+∑
k∈Sq

|(x̄ (k)− x̄ ′(k))|

≤ (1 + |Sq|)ϵ1le ≤ O(N̄)ϵ1le.

3. Hardness Results for Two-Commodity Flow 37

3.5.5 1-LEN(A) to FHF(A): Encoding Equations as Flows

This section describes the reduction from a 1-len instance (Â, b̂, R̂) to an fhf instance
(Gh, F h,uh,Hh, s, t). Recall the form of 1-len Âx̂ = b̂, where Â ∈ Rm̂×n̂ and entries of
Â are in {0,±1}. For an arbitrary equation i in the 1-len instance, Â(i)x̂ = b̂(i), i ∈ [m̂],
let J+

i = {j|Â(i, j) = 1} and J−
i = {j|Â(i, j) = −1} denote the set of indices of variables

with coefficients being 1 and -1 in equation i, respectively. Then, each equation can be
rewritten as a difference of the sum of variables with coefficient 1 and -1:∑

j∈J+
i

x̂ (j)−
∑
j∈J−

i

x̂ (j) = b̂(i), i ∈ [m̂].

s

J+
1

J−
1

J+
m̂

J−
m̂

t

b̂1

b̂m̂

...

1st equation

m̂ th equation

x̂1
1

x̂n̂
1

· · ·

x̂n̂
m̂

x̂1
m̂

...

· · ·

e+1
e−1

e+m̂

e−m̂

Figure 3.1: The reduction from 1-len to fhf.

Representing in this form, we can encode 1-len with a graph using the gadget as
shown in Figure 3.1 – a graph that is composed of a number of homologous edges and
fixed flow edges. More specifically, the fixed homologous flow network consists of a source
s, a sink t, and m̂ sections representing the m̂ linear equations in 1-len. Inside each
section i, there are 2 vertices {J−

i , J
+
i } and a number of edges:

• For the incoming edges of {J−
i , J

+
i },

– if Â(i, j) = 1, then s is connected to J+
i by edge x̂j

i with capacity R̂;

– if Â(i, j) = −1, then s is connected to J−
i by edge x̂j

i with capacity R̂;

– if Â(i, j) = 0, no edge is needed.

Note that those incoming edges that correspond to the same variable are forced to
route the same amount of flow, i.e., (x̂j

1, · · · , x̂
j
m̂), j ∈ [n̂] constitute a homologous

edge set that corresponds to the variable x̂ (j).

• For the outgoing edges of {J−
i , J

+
i },

38 3. Hardness Results for Two-Commodity Flow

– J+
i is connected to t by a fixed flow edge b̂i that routes b̂(i) units of flow;

– J+
i and J−

i are connected to t by a pair of homologous edges e+i , e
−
i with

capacity R̂.

Lemma 3.5.7 (1-len to fhf). Given a 1-len instance (Â, b̂, R̂) with N̂ non-zeros
and magnitude X̂, we can construct, in time O(N̂), an fhf instance (Gh, F h,uh,Hh =
(H1, · · · , Hh), s, t) such that∣∣Eh

∣∣ = O(N̂),
∥∥uh

∥∥
max

= max
{
R̂, X̂

}
.

If the 1-len instance has a solution, then the fhf instance has a solution.

Proof. According to Figure 3.1, the constructed graph Gh preserves the sparsity of Â
and the number of edges

∣∣Eh
∣∣ can be bounded by O(N̂). Moreover, the maximum edge

capacity is bounded by∥∥uh
∥∥
max

= max
{
R̂,
∥∥∥b̂∥∥∥

max

}
≤ max

{
R̂, X̂

}
.

If x̂ is a solution to the 1-len instance, we can derive a feasible flow f h for the
fhf instance by setting

f h(x̂j
1) = · · · = f h(x̂j

m̂) = x̂ (j) ≤ R̂, ∀j ∈ [n̂],

f h(b̂i) = b̂(i) and f h(e+i) = f h(e−i) =
∑
j∈J−

i

x̂ (j) =
∑
j∈J+

i

x̂ (j)− b̂(j), ∀i ∈ [m̂].

It is a feasible flow since both capacity constraints and flow conservation constraints are
satisfied.

In the approximate case, we first formally define fhfa by applying the corresponding
error notions (Definition 3.3.16) to fhf.

Definition 3.5.8 (FHF Approximate Problem (fhfa)). An fhfa instance is given by an
fhf instance (G,F,u ,H, s, t) as in Definition 3.3.12, and an error parameter ϵ ∈ [0, 1],
which we collect in a tuple (G,F,H,u , s, t, ϵ). We say an algorithm solves the fhfa
problem, if, given any fhfa instance, it returns a flow f ≥ 0 that satisfies

u(e)− ϵ ≤ f (e) ≤ u(e) + ϵ, ∀e ∈ F, (error in congestion)

0 ≤ f (e) ≤ u(e) + ϵ, ∀e ∈ E\F, (error in congestion)∣∣∣∣∣∣
∑

u:(u,v)∈E

f (u, v)−
∑

w:(v,w)∈E

f (v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{s, t}, (error in demand)

|f (v, w)− f (v′, w′)| ≤ ϵ, ∀(v, w), (v′, w′) ∈ Hi, ∀Hi ∈ H, (error in homology)

or it correctly declares that the associated fhf instance is infeasible.

Lemma 3.5.9 (1-lena to fhfa). Given a 1-lena instance (Â, b̂, R̂, ϵ1le) with N̂ non-
zeros and magnitude X̂, we can reduce it to an fhfa instance (Gh, F h,Hh,uh, s, t, ϵh) by
letting

ϵh = Ω

(
1

N̂

)
ϵ1le,

3. Hardness Results for Two-Commodity Flow 39

and using Lemma 3.5.7 to construct an fhf instance (Gh, F h,Hh,uh, s, t) from the 1-
len instance (Â, b̂, R̂). If f h is a solution to the fhfa (fhf) instance, then in time
O(n̂), we can compute a solution x̂ to the 1-lena (1-len, respectively) instance, where
the exact case holds when ϵh = ϵ1le = 0.

Proof. Let f h be a feasible solution to the fhfa instance, so that error in demand, error
in congestion, and error in homology can all be bounded by ϵh. Let x̂ i(j) = f h(x̂j

i) denote
the amount of flow routed through in the ith section of Gh. For an arbitrary equation
Â(i)x̂ − b̂(i) in 1-lena , its error can be bounded as follows:

|Â(i)x̂ − b̂(i)| = |Â(i)x̂ − Â(i)x̂ i + Â(i)x̂ i − b̂(i)|

≤ |Â(i)x̂ − Â(i)x̂ i|+
∣∣∣Â(i)x̂ i − b̂(i)

∣∣∣ .
To bound the first term, we have

|Â(i)x̂ − Â(i)x̂ i| ≤
∥∥∥Â(i)

∥∥∥
1
∥x̂ − x̂ i∥max ≤

∥∥∥Â(i)
∥∥∥
1
ϵh,

where the last step follows from the error in homology in Gh. To bound the second term,
we have ∣∣∣Â(i)x̂ i − b̂(i)

∣∣∣
=
∣∣∣f h(s, J+

i)− f h(s, J−
i)− b̂(i)

∣∣∣ by construction

≤
∣∣∣f h(s, J+

i)− (f h(e+i) + f h(b̂i))
∣∣∣+ ∣∣∣f h(e+i) + f h(b̂i)− f h(s, J−

i)− b̂(i)
∣∣∣

≤ ϵh +
∣∣∣f h(e+i) + f h(b̂i)− f h(s, J−

i)− b̂(i)
∣∣∣ by error in demand of vertex J+

i

≤ ϵh +
∣∣f h(e+i)− f h(e−i)

∣∣+ ∣∣f h(e−i)− f h(s, J−
i)
∣∣+ ∣∣∣f h(b̂i)− b̂(i)

∣∣∣
≤ 4ϵh,

where the last step follows from error in homology between edge e+i , e
−
i , error in demand

of vertex J−
i , and error in congestion of fixed flow edge b̂i, respectively.

Combining the bounds of the two terms, we obtain the error of an arbitrary equation
in 1-lena as

|Â(i)x̂ − b̂(i)| ≤
(∥∥∥Â(i)

∥∥∥
1
+ 4
)
ϵh ≤ O(N̂)ϵh.

3.6 Flow Space

3.6.1 Overview

In the flow space, the starting problem is fhf (Definition 3.3.12), whose additional edge
constraints include homologous flow constraints (Definition 3.3.9) and fixed flow con-
straints (Definition 3.3.10). The target problem is 2cf (Definition 3.3.7), which has no
additional edge constraints. Therefore, we are tasked to drop additional edge constraints
step by step in the flow space. Note that new additional edge constraints may emerge as
we drop ones, for example, selective flow constraints (Definition 3.3.11).

40 3. Hardness Results for Two-Commodity Flow

Exact Case. To reduce instance A to instance B, we focus on dropping specific edge
constraints. Let the graph of instance A be GA = (EA, V A) and let SA ⊆ EA denote the
set of edges in A with the constraints to be dropped. The reduced graph GB = (EB, V B)
replaces each edge e ∈ SA with a constant-sized gadget.4 These gadgets simplify or
remove the associated constraints.

The general reduction and solution mapping framework is shown in Figure 3.2.

v w
e : (l, u)

v w
e1 : (, u) e2 : (, u)

constant-sized
gadget

(GA) (GB)

(fB, εB)(fA, εA)
fA
1 (e)← fB

1 (e1)

fA
2 (e)← fB

2 (e1)

Figure 3.2: Reduction and solution mapping algorithms in the flow space.

Reduction:
For each special edge e = (v, w) ∈ SA with lower and upper capacities (l, u),5 the
reduction replaces e with two edges e1 and e2, along with a constant sized gadget
between e1 and e2. The upper capacity of e1 and e2 remains u; and the lower
capacity is either l or reduced to 0, depending on the reduction step.

Solution mapping:
If a solver returns f B for instance B, the flow for instance A is constructed as
follows:6

f A
i (e) = f B

i (e1), for e ∈ SA, i ∈ {1, 2}.

For regular edges in e ∈ EA\SA, the flow is directly mapped:

f A
i (e) = f B

i (e), for e ∈ EA\SA, i ∈ {1, 2}.

If the solver returns “infeasible” for instance B, then we return “infeasible” for
instance A as well.

Based on the general reduction and solution mapping framework, the following results
apply to every step within the flow space.

Lemma 3.6.1 (Problem Size and Runtime for Reduction Algorithm). In the flow space,
when reducing instance A to instance B, the number of edges in B satisfies

∣∣EB
∣∣ =

O(
∣∣EA

∣∣). Moreover, the reduction algorithm takes runtime
∣∣EB

∣∣ = O(
∣∣EA

∣∣).
Proof. There are at most |EA| edges in GA that are replaced by gadgets of constant size.
The total size of GB is thus O(

∣∣EA
∣∣). The runtime is linear to the number of edges in

GB, thus O(
∣∣EB

∣∣).
4Only a few steps may utilize gadgets that deviate slightly from the general pattern. If this occurs,

we will provide a note in the relevant section.
5The lower edge capacity is set to l = 0 unless the edge is a fixed-flow edge, in which case l = u.
6For 1-commodity flow problem, let f 2 = 0.

3. Hardness Results for Two-Commodity Flow 41

Lemma 3.6.2 (Runtime for Solution Mapping Algorithm). In the flow space, mapping
a solution to instance B to a solution to instance A takes O(

∣∣EA
∣∣) runtime.

Proof. The runtime is linear to the number of edges in GA, as solution mapping involves
directly transferring or reconstructing flow values for each edge. Thus, the runtime is
O(
∣∣EA

∣∣).
Approximate Case. We apply the same reduction and solution mapping algorithm
for approximate problems. Hence, Lemma 3.6.1, 3.6.2 also hold for the approximate case.
Additional analyses focus on the error propagation during solution mapping. Specifically,
if (f B, ϵB) is an approximate solution to instance B with error ϵB, then the mapped
solution (f A, ϵA) to instance A has an error ϵA that can be upper bounded. In particular,
when ϵA, ϵB = 0, the statement for the approximate case is reduced to the exact case.

Different types of errors are analyzed separately for problems in the flow space. As the
capacity constraints and the flow conservation constraints are required for all problems
in the flow space, the corresponding error in congestion and error in demand are involved
in the error analysis for all steps. The following error bounds are applicable at every step
within the flow space.

Lemma 3.6.3 (Error in Congestion). Let ϵAl , ϵ
A
u and ϵBl , ϵ

B
u be the errors in congestion

w.r.t. lower and upper capacity for f A and f B, respectively. If applying the solution
mapping algorithm, then for edges in GA with l = 0,

ϵAl = 0,

and for all edges in GA,
ϵAu ≤ O(ϵBu).

Proof. With the non-negativity constraints satisfied by f A for edges in GA with l = 0,
ϵAl can be trivially bounded, regardless of ϵBl .

For the upper edge capacity, the error bounds are straightforward if e is a regular
edge, as the flow is copied directly from GA and GB. However, if e is a special edge, the
upper-capacity error in GA remains bounded by ϵB, as e1 and e have the same upper edge
capacity u according to Figure 3.2.

Remark that for edges in GA with l = u, lower-capacity error in congestion requires
case-by-case analysis.

The following helper lemma is frequently used to analyze error in demand across
various reduction steps.

Lemma 3.6.4 (Error in Demand). Let ϵAd,i and ϵBd,i be the error in demand of f A and f B

for commodity i, i ∈ {1, 2}, respectively. If applying the solution mapping algorithm, we
have

ϵAd,i ≤ ϵBd,i + max
v∈V A\{si,ti}

∑
e=(u,v)∈SA

∣∣f B
i (e1)− f B

i (e2)
∣∣ .

Proof. By Definition 3.3.16, error in demand for vertices other than the source/sink nodes
is defined as∣∣∣∣∣∣

∑
u:(u,v)∈E

f i(u, v)−
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2}.

42 3. Hardness Results for Two-Commodity Flow

As illustrated in Figure 3.3, consider an arbitrary vertex v ∈ V B\{si, ti} with a
number of incoming and outgoing edges. Some of these edges are derived from the
reduction of special edges in GA, as indicated by dashed boxes in the figure.

When mapping f B to f A, the incoming/outgoing flows of v along regular edges remain
unchanged, while flows along special edges may vary due to the gap between e1 and e2.

e2

v

e′1

e1 e′2

Figure 3.3: An illustration of the incoming and outgoing flows of vertex v ∈ V B\{si, ti}
when get reduced to GB.

For flow of commodity i ∈ {1, 2}, we have

ϵAd,i = max
v∈V A\{si,ti}

∣∣∣∣∣∣
∑

(u,v)∈EA

f A
i (u, v)−

∑
(v,w)∈EA

f A
i (v, w)

∣∣∣∣∣∣
(1)
= max

v∈V A\{si,ti}

∣∣∣∣∣∣
 ∑

(u,v)∈SA

f A
i (u, v) +

∑
(u,v)∈EA\SA

f A
i (u, v)

−

 ∑
(v,w)∈SA

f A
i (v, w) +

∑
(v,w)∈EA\SA

f A
i (v, w)

∣∣∣∣∣∣
(2)
= max

v∈V A\{si,ti}

∣∣∣∣∣∣
 ∑

e=(u,v)∈SA

f B
i (e1) +

∑
(u,v)∈EA\SA

f B
i (u, v)

−

 ∑
e=(v,w)∈SA

f B
i (e1) +

∑
(v,w)∈EA\SA

f B
i (v, w)

∣∣∣∣∣∣
(3)

≤ ϵBd,i + max
v∈V A\{si,ti}

∣∣∣∣∣∣
 ∑

e=(u,v)∈SA

f B
i (e1) +

∑
(u,v)∈EA\SA

f B
i (u, v)

−

 ∑
e=(u,v)∈SA

f B
i (e2) +

∑
(u,v)∈EA\SA

f B
i (u, v)

∣∣∣∣∣∣
= ϵBd,i + max

v∈V A\{si,ti}

∣∣∣∣∣∣
∑

e=(u,v)∈SA

f B
i (e1)−

∑
e=(u,v)∈SA

f B
i (e2)

∣∣∣∣∣∣
= ϵBd,i + max

v∈V A\{si,ti}

∣∣∣∣∣∣
∑

e=(u,v)∈SA

(f B
i (e1)− f B

i (e2))

∣∣∣∣∣∣
≤ ϵBd,i + max

v∈V A\{si,ti}

∑
e=(u,v)∈SA

∣∣∣f B
i (e1)− f B

i (e2)
∣∣∣ .

For step (1), we separate special edges from regular edges that are incident to vertex
v. For step (2), we apply the solution mapping algorithm from f B back to f A. For step
(3), we can replace the sum of outgoing flows of v by the sum of its incoming flows with
an error in demand of instance B being introduced.

3.6.2 FHF(A) to FPHF(A)

In this section, we show the reduction from an fhf instance (Gh, Hh,Hh,uh, s, t) to an
fphf instance (Gp, F p,Hp,up, s, t). This step does not drop any additional edge con-
straints, but simplifies the edge constraints for future dropping steps. More specifically,
in Gh, it is possible for more than two edges to be constrained to route the same amount
of flow. The goal is to reduce Gh to Gp such that each edge is homologous to at most
one other edge.

3. Hardness Results for Two-Commodity Flow 43

Suppose that (v1, w1), · · · , (vk, wk) ∈ Eh belong to a set of homologous edges of size
k in Gh. As shown in Figure 3.4,7 we replace (vi, wi), i ∈ {2, · · · , k − 1} by two edges
(vi, zi) and (zi, wi) such that zi is a new vertex incident only to these two edges, and
edge capacities of the two new edges are the same as that of the original edge (vi, wi).
Then, we can construct k − 1 pairs of homologous edges: (v1, w1) and (v2, z2); (z2, w2)
and (v3, z3); · · · ; (zi, wi) and (vi+1, zi+1); · · · ; (zk−1, wk−1) and (vk, wk). In addition, no
reduction is performed on non-homologous edges in Gh, and we trivially copy these edges
to Gp. Compared with Figure 3.2, the constant-sized gadget in this step corresponds to
the inserted vertex zi, as indicated by the dashed boxes.

Lemma 3.6.5 (fhf to fphf). Given an fhf instance (Gh, F h,Hh,uh, s, t), we can
construct, in time O(|Ep|), an fphf instance (Gp, F p,Hp,up, s, t) such that

|Ep| = O
(∣∣Eh

∣∣) , ∥up∥max =
∥∥uh

∥∥
max

.

If the fhf instance has a solution, then the fphf instance has a solution.

Proof. The runtime of reduction and the bound for |Ep| follow from Lemma 3.6.1. More-
over, as the reduction of this step only inserts new vertices without modifying edge
capacities, we have ∥up∥max =

∥∥uh
∥∥
max

.

If f h is a feasible flow to the fhf instance, it is easy to derive a solution f p to the
fphf instance. Concretely, for any homologous edge e ∈ Eh that is split into two edges
e1, e2 ∈ Ep, we set f p(e1) = f p(e2) = f h(e). Since the vertex between e1 and e2 is only
incident to these two edges, then the conservation of flows is satisfied on the inserted
vertices. Moreover, since the edge capacities of e1 and e2 are the same as that of e, and
they route the same amount of flows, thus the capacity constraint is also satisfied on
the split edges. In addition, the flow conservation and capacity constraints are trivially
satisfied for the rest vertices and edges. Therefore, f p is a feasible flow to the fphf
instance.

v1 w1

vi

(0, u)

e1
vi wi

e

vi+1 wi+1

e′

zi wi
e2

vi+1
e′1

wi+1

e′2

vk wk vk wk

v1
(0, u)

w1

(Gh) (Gp)

...

...

...

...

zi+1

(0, u)

(0, u)

(0, u)

(0, u) (0, u)

(0, u) (0, u)

(0, u)

Figure 3.4: The reduction from fhf to fphf.

7We use (0, u) for an non-fixed flow edge of capacity u.

44 3. Hardness Results for Two-Commodity Flow

In the approximate case, we first formally define fphfa by applying the corresponding
error notions (Definition 3.3.16) to fphf.

Definition 3.6.6 (FPHF Approximate Problem (fphfa)). An fphfa instance is given
by an fphf instance (G,F,H,u , s, t) as in Definition 3.3.13, and an error parameter
ϵ ∈ [0, 1], which we collect in a tuple (G,F,H,u , s, t, ϵ). We say an algorithm solves the
fphfa problem, if, given any fphfa instance, it returns a flow f ≥ 0 that satisfies

u(e)− ϵ ≤ f (e) ≤ u(e) + ϵ, ∀e ∈ F, (error in congestion)

0 ≤ f (e) ≤ u(e) + ϵ, ∀e ∈ E\F, (error in congestion)∣∣∣∣∣∣
∑

u:(u,v)∈E

f (u, v)−
∑

w:(v,w)∈E

f (v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{s, t}, (error in demand)

|f (v, w)− f (y, z)| ≤ ϵ, ∀(v, w), (y, z) ∈ Hi, ∀Hi ∈ H, (error in pairwise homology)

or it correctly declares that the associated fphf instance is infeasible.

Lemma 3.6.7 (fhfa to fphfa). Given an fhfa instance (Gh, F h,Hh,uh, s, t, ϵh), we
can reduce it to an fphfa instance (Gp, F p,Hp,up, s, t, ϵp) by letting

ϵp = Ω

(
1

|Eh|

)
ϵh,

and using Lemma 3.6.5 to construct an fphf instance (Gp, F p,Hp,up, s, t) from the fhf
instance (Gh, Hh,Hh,uh, s, t). If f p is a solution to the fphfa (fphf) instance, then in
time O(

∣∣Eh
∣∣), we can compute a solution f h to the fhfa (fhf, respectively) instance,

where the exact case holds when ϵp = ϵh = 0.

Proof. To bound error in congestion, we have ϵhu ≤ O(ϵp) according to Lemma 3.6.3. For
ϵhl , we have ϵhl = 0 if e ∈ Ep\F p. If e ∈ F p, since we just copy them without making
reductions for fixed flow edges in this step, we also have ϵhl ≤ O(ϵp).

To bound error in demand, by Lemma 3.6.4 and error in demand of auxiliary vertex
z, we have

ϵhd ≤ ϵp + max
v∈V h\{s,t}

∑
e=(u,v)∈Hh

|f p(e1)− f p(e2)| ≤ O
(∣∣Eh

∣∣) ϵp.
Finally, we bound error in homology in Gh. It is observed that error in homology in Gh

for a homologous edge set of size k gets accumulated by (k − 1) times of error in pair
homology in Gp, and we have k ≤ |Eh|. Thus, ϵhh ≤ O

(∣∣Eh
∣∣) ϵp. Putting it all together,

we have
ϵh = max{ϵhl , ϵhu, ϵhd , ϵhh} ≤ O

(∣∣Eh
∣∣) ϵp.

3.6.3 FPHF(A) to SFF(A): Dropping Homologous Flow Con-
straints

We show the reduction from an fphf instance (Gp, F p,Hp,up, s, t) to an sff instance
(Gs, F s, S1, S2,u

s, s1, t1, s2, t2). Assume that {e, ê} ∈ Hp is an arbitrary pair of homol-
ogous edges in Gp. As shown in Figure 3.5, we map {e, ê} in Gp to a constant-sized

3. Hardness Results for Two-Commodity Flow 45

gadget in Gs, as indicated in the dashed boxes. The key idea to remove the homolo-
gous requirement is to introduce a second commodity between a source-sink pair (s2, t2).
Concretely, we impose the fixed flow constraints on (e4, ê4), the selective flow constraint
of commodity 1 on (e1, e2, ê1, ê2), and the selective flow constraint of commodity 2 on
(e3, e5/ê3, ê5). Then, there is a flow of commodity 2 that routes through the directed path
e3 → e4 → e5/ê3 → ê4 → ê5, and a flow of commodity 1 through paths e1 → e4 → e2
and ê1 → ê4 → ê2. The fixed flow constraint on (e4, ê4) forces the flow of commodity 1
through the two paths to be equal, since the flows of commodity 2 on (e4, ê4) are equal.
Thus, the homologous requirement for edge e and ê is simulated. In addition, as no
reduction is performed on non-homologous edges in Gp, we trivially copy these edges to
Gs, and restrict these edges to be selective for commodity 1.

v w y z

s2

vw′vw yz′yz

t2

{1, 2} : (u, u) {2} : (0, u) {1, 2} : (u, u)

{1} : (0, u) {1} : (0, u)
e1 e2 ê1 ê2

e3

e4 ê4

ê5

(Gs)

(Gp) v w y z(0, u) (0, u)

e ê

e5/ê3

{1} : (0, u)

{2} : (0, u)

{1} : (0, u)

{2} : (0, u)

Figure 3.5: The reduction from fphf to sff. The constant-sized gadget is indicated by
the dashed boxes.

Lemma 3.6.8 (fphf to sff). Given an fphf instance (Gp, F p,Hp,up, s, t), we can
construct, in time O(|Ep|), an sff instance (Gs, F s, S1, S2,u

s, s1, t1, s2, t2) such that

|Es| = O (|Ep|) , ∥us∥max = ∥u
p∥max .

If the fphf instance has a solution, then the sff instance has a solution.

Proof. The runtime of reduction and the bound for |Es| follow from Lemma 3.6.1. More-
over, we have by construction ∥us∥max = ∥up∥max.

If f p is a solution to the fphf instance, it is easy to derive a solution f s to the sff
instance. Concretely, we construct a feasible flow f s as follows:

• For any pair of homologous edge {e, ê} ∈ Hp, in its corresponding gadget in Gs, we
set

f s
1(e1) = f s

1(e4) = f s
1(e2) = f p(e) = f p(ê) = f s

1(ê1) = f s
1(ê4) = f s

1(ê2) ≤ u,

where u = up(e) = up(ê), and set

f s
2(e1) = f s

2(e2) = f s
2(ê1) = f s

2(ê2) = 0.

It is obvious that f s satisfies the selective constraint and the capacity constraint on
edges e1, e2, ê1, ê2, and satisfies conservation of flows for commodity 1 on vertices
vw, vw′, yz, yz′.

46 3. Hardness Results for Two-Commodity Flow

Moreover, we set

f s
2(e3) = f s

2(e4) = f s
2(e5) = f s

2(ê4) = f s
2(ê5) = u− f p(e) ≤ u,

f s
1(e3) = f s

1(e4) = f s
1(e5) = f s

1(ê4) = f s
1(ê5) = 0.

Then it is obvious that f s satisfies the selective constraint and the capacity con-
straint on edges e3, e5, ê5, and satisfies the flow conservation constraint of commod-
ity 2 on vertices vw, vw′, yz, yz′.

It remains to verify if f s satisfies the fixed flow constraint on edges e4, ê4. According
to the above constructions, we have (we abuse the notation to also let f s = f s

1+f s
1)

f s(e4) = f s
1(e4) + f s

2(e4) = f p(e) + (u− f p(e)) = u,

f s(ê4) = f s
1(ê4) + f s

2(ê4) = f p(ê) + (u− f p(ê)) = u.

• For any non-homologous edge e′ ∈ Ep, we also have e′ ∈ Es since no reduction is
made on this edge, and we copy it trivially to Gs. We set

f s
1(e

′) = f p(e′), f s
2(e

′) = 0.

Since f p is a feasible flow in Gp, it is easy to check that f s also satisfies the selective
constraint for commodity 1 and the capacity constraint on non-homologous edges,
as well as conservation of flows on vertices incident to non-homologous edges.

To conclude, f s is a feasible flow to the sff instance.

Definition 3.6.9 (SFF Approximate Problem (sffa)). An sffa instance is given by an
sff instance (G,F, S1, S2,u , s1, t1, s2, t2) as in Definition 3.3.14, and an error parameter
ϵ ∈ [0, 1], which we collect in a tuple (G,F, S1, S2,u , s1, t1, s2, t2, ϵ). We say an algorithm
solves the sffa problem, if, given any sffa instance, it returns a pair of flows f 1, f 2 ≥ 0
that satisfies

u(e)− ϵ ≤ f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ F, (error in congestion)

0 ≤ f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E\F, (error in congestion)∣∣∣∣∣∣
∑

u:(u,v)∈E

f i(u, v)−
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2},

(error in demand)

f ī(e) ≤ ϵ, ∀e ∈ Si, ī = {1, 2}\I, (error in selection)

or it correctly declares that the associated sff instance is infeasible.

Lemma 3.6.10 (fphfa to sffa). Given an fphfa instance (Gp, F p,Hp,up, s, t, ϵp), we
can reduce it to an sffa instance (Gs, F s, S1, S2,u

s, s1, t1, s2, t2, ϵ
s) by letting

ϵs = Ω

(
1

|Ep|

)
ϵp,

and using Lemma 3.6.8 to construct an sff instance (Gs, F s, S1, S2,u
s, s1, t1, s2, t2) from

the fphf instance (Gp, F p,Hp,up, s, t). If f s is a solution to the sffa (sff) instance,
then in time O(|Ep|), we can compute a solution f p to the fphfa (fphf, respectively)
instance, where the exact case holds when ϵs = ϵp = 0.

3. Hardness Results for Two-Commodity Flow 47

Proof. To bound error in congestion, we have ϵpu ≤ O(ϵs) according to Lemma 3.6.3. For
ϵpl , we have ϵpl = 0 if e ∈ Ep\F p, whereas if e ∈ F p, we have

f p(e) = f s
1(e) by solution mapping for non-homologous edges

≥ f s(e)− ϵs by error in selection

≥ us(e)− 2ϵs by error in congestion

= up(e)− 2ϵs.

Hence, ϵpl ≤ 2ϵs.
To bound error in demand, by Lemma 3.6.4 and solution mapping algorithm, we have

ϵpd ≤ ϵs + max
w∈V p\{s,t}

∑
e=(v,w)∈Hp

|f s
1(e1)− f s

1(e2)| , (3.3)

so the key is to bound |f s
1(e1)− f s

1(e2)|. Again, we can decompose the difference into
several error terms.

|f s
1(e1)− f s

1(e2)| ≤ |f s
1(e1) + f s

1(e3)− f s
1(e4)|+ |f s

1(e4)− f s
1(e3)− f s

1(e2)|
≤ ϵs + |f s

1(e4)− f s
1(e3)− f s

1(e2)| by error in demand of vertex vw

≤ ϵs + |f s
1(e4)− f s

1(e2)− f s
1(e5)|+ |f s

1(e5)− f s
1(e3)|

≤ 2ϵs + |f s
1(e5)− f s

1(e3)| by error in demand of vertex vw′

≤ 2ϵs +max{f s
1(e5), f

s
1(e3)}

≤ 3ϵs, by error in type of edge e3 and e5

Since |Hp| = O(|Ep|), plugging the above back to Eq. (3.3), we have ϵpd ≤ O(|Ep|)ϵs.
Finally, we bound error in pairwise homology in Gp. For any pair of homologous

edges,

|f s
1(e1)− f s

1(ê1)| = |(f s(e1)− f s
2(e1))− (f s(ê1)− f s

2(ê1))|
≤ |f s(e1)− f s(ê1)|+ |f s

2(e1)− f s
2(ê1)|

≤ ϵs + |f s(e1)− f s(ê1)| by error in type of edge e1 and ê1

≤ ϵs + |(f s(e1) + f s(e3))− (f s(ê1) + f s(ê3))|+ |f s(e3)− f s(ê3)| .

To analyze |(f s(e1) + f s(e3))− (f s(ê1) + f s(ê3))|, we decompose as follows:

|(f s(e1) + f s(e3))− (f s(ê1) + f s(ê3))|
≤ |f s(e1) + f s(e3)− f s(e4)|+ |f s(e4)− (f s(ê1) + f s(ê3))|
≤ 2ϵs + |f s(e4)− (f s(ê1) + f s(ê3))|

by error in demand of vertex vw for two commodities

≤ 2ϵs + |f s(ê4)− (f s(ê1) + f s(ê3))|+ |f s(e4)− f s(ê4)|
≤ 4ϵs + |f s(e4)− f s(ê4)| by error in demand of vertex yz for two commodities

≤ 6ϵs, by error in congestion on e4 and ê4

For |f s(e3)− f s(ê3)|, similarly, we have

|f s(e3)− f s(ê3)| = |(f s
1(e3) + f s

2(e3))− (f s
1(ê3) + f s

2(ê3))|
≤ |f s

1(e3)− f s
1(ê3)|+ |f s

2(e3)− f s
2(ê3)|

≤ ϵs + |f s
2(e3)− f s

2(ê3)| by error in type in Gs and e3, ê3

≤ 4ϵs, by symmetry from the bound of |f s
1(e1)− f s

1(e2)|

48 3. Hardness Results for Two-Commodity Flow

Therefore, we can bound the error in pair homology by

ϵph ≤ 11ϵs.

Putting it altogether, we have

ϵp = max{ϵpl , ϵ
p
u, ϵ

p
d, ϵ

p
h} ≤ O (|Ep|) ϵs.

3.6.4 SFF(A) to 2CFF(A): Dropping Selective Flow Con-
straints

We show the reduction from an sff instance (Gs, F s, S1, S2,u
s, s1, t1, s2, t2) to a 2cff

instance (Gf , F f ,uf , s1, t1, s2, t2). Assume that e ∈ Si is an arbitrary selective edge for
commodity i in Gp. As shown in Figure 3.6, we map e in Gs to a gadget consisting of
edges {e1, e2, e3, e4, e5} in Gf . Note that a selective edge e can be either a fixed flow edge
or a non-fixed flow edge. In Figure 3.6, l = u if e is a fixed flow edge and l = 0 if e is a
non-fixed flow edge. Moreover, no reduction is performed on non-selective edges in Gs,
and we trivially copy these edges to Gf .

The key idea to remove the selective requirement is utilizing edge directions and the
source-sink pair (si, ti) to simulate a selective edge e for commodity i. More specifically,
in the gadget, the flow of commodity i routes through three directed paths: (1) e1 → e4,
(2) e5 → e3 → e4, (3) e5 → e2. The selective requirement is realized because e4 is the
only outgoing edge of xy and only the flow of commodity i is allowed in e4 (since its
tail is ti), thus in e1. Similarly, e5 is the only incoming edge of xy′ and only the flow
of commodity i is allowed in e5, thus in e2. In addition, to ensure that e1 and e2 route
the same amount of flow, flows in e4 and e5 must be equal by the conservation of flows.
Therefore, we impose the fixed flow constraint on e4 and e5 by setting the fixed flow to
be u. We remove e3 if e is a fixed flow edge (in which case e3 has capacity 0), and set the
capacity of e3 to be u otherwise (in which case u− l = u− 0 = u).

x y

x xy xy′ y

ti si

(l, u) (0, u− l) (l, u)

(u, u) (u, u)

(l, u)
(Gs)

(Gf)

{i} :

e1

e

e3 e2

e4 e5

(0, u− l)

Figure 3.6: The reduction from sff to 2cff. l = u if e is a fixed flow edge, and l = 0 if
e is a non-fixed flow edge.

3. Hardness Results for Two-Commodity Flow 49

Lemma 3.6.11 (sff to 2cff). Given an sff instance (Gs, F s, S1, S2,u
s, s1, t1, s2, t2),

we can construct, in time O(|Es|), a 2cff instance (Gf , F f ,uf , s1, t1, s2, t2) such that∣∣Ef
∣∣ = O (|Es|) ,

∥∥uf
∥∥
max

= ∥us∥max .

If the sff instance has a solution, then the 2cff instance has a solution.

Proof. If f s is a solution to the sff instance, it is easy to derive a solution f f to the
2cff instance as follows:

• For any selective edge e ∈ Si, in its corresponding gadget in Gf , we set

l ≤ f f
i (e1) = f f

i (e3) = f s
i (e) ≤ u,

f f
i (e4) = f f

i (e5) = u,

0 ≤ f f
i (e2) = u− f s

i (e) ≤ u− l,

where l = 0 if e is a non-fixed flow edge, or l = u = us(e) if e is a fixed flow edge.
And we set

f f
ī
(e1) = f f

ī
(e2) = f f

ī
(e3) = f f

ī
(e4) = f f

ī
(e5) = 0, ī = {1, 2}\i.

It is obvious that f f satisfies the capacity constraint on edges (e1, . . . , e5), and the
flow conservation constraint on vertices xy, xy′.

• For any non-selective edge e′ ∈ Es\(S1∪S2), we also have e
′ ∈ Ef since no reduction

is made on this edge, and we copy it trivially to Gf . We set

f f
i (e

′) = f s
i (e

′), i ∈ {1, 2}.

Since f s is a feasible flow in Gs, it is easy to check that f f also satisfies the capacity
constraint on non-selective edges, as well as the flow conservation constraint on
vertices incident to non-selective edges. Moreover, if e′ is a fixed flow edge, the
fixed flow edge constraint is also satisfied.

To conclude, f f is a feasible flow to the 2cff instance.

Definition 3.6.12 (2CFF Approximate Problem (2cffa)). A 2cffa instance is given
by a 2cff instance (G,F,u , s1, t1, s2, t2) as in Definition 3.3.15, and an error parameter
ϵ ∈ [0, 1], which we collect in a tuple (G,F,u , s1, t1, s2, t2, ϵ). We say an algorithm solves
the 2cffa problem, if, given any 2cffa instance, it returns a pair of flows f 1, f 2 ≥ 0
that satisfies

u(e)− ϵ ≤ f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ F, (error in congestion)

0 ≤ f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E\F, (error in congestion)∣∣∣∣∣∣
∑

u:(u,v)∈E

f i(u, v)−
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2},

(error in demand)

or it correctly declares that the associated 2cff instance is infeasible.

50 3. Hardness Results for Two-Commodity Flow

Lemma 3.6.13 (sffa to 2cffa). Given an sffa instance
(Gs, F s, S1, S2,u

s, s1, t1, s2, t2, ϵ
s), we can reduce it to a 2cffa instance(

Gf , F f ,uf , s1, t1, s2, t2, ϵ
f
)
by letting

ϵf = Ω

(
1

|Ep|

)
ϵs,

and using Lemma 3.6.11 to construct a 2cff instance
(
Gf , F f ,uf , s1, t1, s2, t2

)
from the

sff instance (Gs, F s, S1, S2,u
s, s1, t1, s2, t2). If f

f is a solution to the 2cffa (2cff) in-
stance, then in time O(|Es|), we can compute a solution f s to the sffa (sff, respectively)
instance, where the exact case holds when ϵf = ϵs = 0.

Proof. To bound error in congestion, we have ϵsu ≤ O(ϵf) according to Lemma 3.6.3. For
ϵsl , we have ϵsl = 0 if e ∈ Es\F s. If e ∈ F s, since we just copy them without making
reductions for fixed flow edges in this step, we also have ϵsl ≤ O(ϵf).

To bound error in demand, we analyze commodity 1 and commodity 2 separately. Let
Si be the set of selective edges for commodity i, i ∈ {1, 2}, and let S = S1 ∪ S2. Also,
let ϵsd,i be the error in demand for commodity i. By Lemma 3.6.4 and solution mapping
algorithm, we have

ϵsd,i ≤ ϵf + max
w∈V p\{si,ti}

∑
e=(v,w)∈S

|f s
i (e1)− f s

i (e2)|

= ϵf + max
w∈V p\{si,ti}

 ∑
e=(v,w)∈Si

∣∣∣f f
i (e1)− f f

i (e2)
∣∣∣+ ∑

e=(v,w)∈Sī

∣∣∣f f
i (e1)− f f

i (e2)
∣∣∣
 .

(3.4)

The problem is reduced to bounding
∣∣∣f f

i (e1)− f f
i (e2)

∣∣∣.∣∣∣f f
i (e1)− f f

i (e2)
∣∣∣

≤
∣∣∣f f

i (e1) + f f
i (e3)− f f

i (e4)
∣∣∣+ ∣∣∣f f

i (e4)− f f
i (e3)− f f

i (e2)
∣∣∣

≤ ϵf +
∣∣∣f f

i (e4)− f f
i (e3)− f f

i (e2)
∣∣∣ by error in demand of vertex xy

≤ ϵf +
∣∣∣f f

i (e4)− f f
i (e5)

∣∣∣+ ∣∣∣f f
i (e5)− f f

i (e3)− f f
i (e2)

∣∣∣
≤ 2ϵf +

∣∣∣f f
i (e4)− f f

i (e5)
∣∣∣ , by error in demand of vertex xy′

If e ∈ Sī, then, by error in demand of vertex t̄i and sī, we have∣∣∣f f
i (e4)− f f

i (e5)
∣∣∣ ≤ 2ϵf .

However, if e ∈ Si, we have∣∣∣f f
i (e4)− f f

i (e5)
∣∣∣ = ∣∣∣(f f (e4)− f f

ī
(e4)

)
−
(
f f (e5)− f f

ī
(e5)

)∣∣∣
≤
∣∣f f (e4)− f f (e5)

∣∣+ ∣∣∣f f
ī
(e4)− f f

ī
(e5)

∣∣∣
≤ 2ϵf +

∣∣∣f f
ī
(e4)− f f

ī
(e5)

∣∣∣ by error in congestion of edge e4 and e5

≤ 4ϵf , by error in demand of vertex ti and si

3. Hardness Results for Two-Commodity Flow 51

Hence, since |S| = O(|Es|), plugging the above back to Eq. (3.4), we have

ϵsd = max{ϵsd,1, ϵsd,2} ≤ O(|Es|)ϵf .

Finally, we bound the error in selection in Gs. Suppose e ∈ Si, we have

f s
ī (e) = f f

ī
(e1)

≤ f f
ī
(e1) + f f

ī
(e3) by non-negativity constraint

≤ f f
ī
(e4) +

∣∣∣f f
ī
(e1) + f f

ī
(e3)− f f

ī
(e4)

∣∣∣
≤ ϵf +

∣∣∣f f
ī
(e1) + f f

ī
(e3)− f f

ī
(e4)

∣∣∣ , by error in demand of vertex ti

≤ 2ϵf , by error in demand of vertex xy

Therefore, we can bound the error in type by

ϵss ≤ 2ϵf .

Putting it all together, we have

ϵs = max{ϵsl , ϵsu, ϵsd, ϵss} ≤ O (|Es|) ϵf .

3.6.5 2CFF(A) to 2CFR(A): Dropping Fixed Flow Constraints

In this section, we show the reduction from a 2cff instance (Gf , F f ,uf , s1, t1, s2, t2) to a
2cfr instance (Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2). First of all, we add two new sources s̄1, s̄2 and
two new sinks t̄1, t̄2. Then, for each edge e ∈ Ef , we map it to a gadget consisting edges
{e1, e2, e3, e4, e5, e6, e7} in Gr, as shown in the upper part of Figure 3.7. Additionally,
there is another gadget with 5 edges in Gr that connects the original sink ti and source
si, as shown in the lower part of Figure 3.7. Capacity of these edges is the sum capacities
of all edges in Gf , i.e., M f =

∑
e∈Ef uf (e). Additionally, we set R1 = R2 = 2M f ,

indicating that at least 2M f unit of flow should be routed from s̄i to t̄i, i ∈ {1, 2}.
The key idea to remove the fixed flow constraint is utilizing edge directions and the

requirements that 2M f units of the flow of commodity i to be routed from the new source
s̄i to the new sink t̄i, i ∈ {1, 2}. It is noticed that all edges that are incident to the new
sources and sinks should be saturated to fulfill the requirements. Therefore, for a fixed
flow edge e in the first gadget, the incoming flow of vertex xy′ and the outgoing flow of
vertex xy must be 2u. Since the capacity of e3 is 2u− u = u, then the flows of e1, e2, e3
are forced to be u. As such, the fixed flow constraint can be simulated. Note that instead
of simply copying non-fixed flow edges to Gr, we also need to map non-fixed flow edges
to the designed gadget in this step. This guarantees that the requirement on flow values
can be satisfied if the 2cff instance is feasible.

Lemma 3.6.14 (2cff to 2cfr). Given a 2cff instance (Gf , F f ,uf , s1, t1, s2, t2), we
can construct, in time O(|Ef |), a 2cfr instance (Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2) such that

|Er| = O
(∣∣Ef

∣∣) , ∥ur∥max = M f ,

where M f =
∑

e∈Ef uf (e). If the 2cff instance has a solution, then the 2cfr instance
has a solution.

52 3. Hardness Results for Two-Commodity Flow

x xy xy′ y

t̄1 t̄2 s̄1 s̄2

(0, u)
e1 e3 e2

e4 e5 e6 e7
x y

(l, u)
e

ti si

ti zi z′i si

t̄i s̄i

(0,M f)

(Gf) (Gr)

(0, 2u− l) (0, u)

(0, u) (0, u) (0, u) (0, u)

(0,M f) (0,M f)

(0,M f) (0,M f)

Figure 3.7: The reduction from 2cff to 2cfr. l = u if e is a fixed flow edge, and l = 0
if e is a non-fixed flow edge.

Proof. Suppose f f is a feasible solution to the 2cff instance, then we can derive a feasible
solution f r to the 2cfr instance. Concretely, we define a feasible flow f r as follows. For
any edge e ∈ Ef , we set:

f r
i (e1) = f r

i (e3) = f f
i (e), i ∈ {1, 2},

f r
i (e2) = u− f f

i (e), i ∈ {1, 2},
f r
1(e4) = f r

1(e6) = u, f r
2(e5) = f r

2(e7) = u,

f r
2(e4) = f r

2(e6) = f r
1(e5) = f r

1(e7) = 0,

where u = uf (e). And we set

f r
i (ti, zi) = f r

i (z
′
i, si) =

∑
w:(si,w)∈Ef

f f
i (si, w) ≤M f , i ∈ {1, 2},

f r
i (z

′
i, zi) = M f −

∑
w:(si,w)∈Ef

f f
i (si, w), i ∈ {1, 2},

f r
i (s̄i, z

′
i) = f r

i (zi, t̄i) = M f , i ∈ {1, 2},
f r
ī (ti, zi) = f r

ī (z
′
i, si) = f r

ī (z
′
i, zi) = f r

ī (s̄i, z
′
i) = f r

ī (zi, t̄i) = 0, ī ∈ {1, 2}\i.
To prove that f r is a solution to the 2cfr instance, it is obvious that capacity con-

straint and flow conservation constraint are satisfied by construction. For the satisfaction
of the requirement constraint R1 = R2 = 2M f , we have, for commodity 1,

R1 =
∑

w:(s̄1,w)∈Er

f r
1(s̄1, w) = f r(s̄1, z

′
1) +

∑
e∈Ef

f r
1(e6) = M f +

∑
e∈Ef

uf (e) = 2M f ,

R1 =
∑

u:(u,t̄1)∈Er

f r
1(u, t̄1) = f r(z1, t̄1) +

∑
e∈Ef

f r
1(e4) = M f +

∑
e∈Ef

uf (e) = 2M f .

We can prove that the requirement R2 = 2M f is satisfied similarly. Therefore, f r is a
feasible flow to the 2cfr instance.

3. Hardness Results for Two-Commodity Flow 53

Definition 3.6.15 (2CFR Approximate Problem (2cfra)). A 2cfra instance is given
by a 2cfr instance (G,u , s1, t1, s2, t2, R1, R2) as in Definition 3.3.8, and an error pa-
rameter ϵ ∈ [0, 1], which we collect in a tuple (G,u , s1, t1, s2, t2, R1, R2, ϵ). We say an
algorithm solves the 2cfra problem, if, given any 2cfra instance, it returns a pair of
flows f 1, f 2 ≥ 0 that satisfies

f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E, (error in congestion)∣∣∣∣∣∣
∑

u:(u,v)∈E

f i(u, v)−
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2}, (error in demand)

∣∣∣∣∣∣
∑

w:(si,w)∈E

f i(si, w)−Ri

∣∣∣∣∣∣ ≤ ϵ,

∣∣∣∣∣∣
∑

u:(u,ti)∈E

f i(u, ti)−Ri

∣∣∣∣∣∣ ≤ ϵ, i ∈ {1, 2},

(error in demand)

or it correctly declares that the associated 2cfr instance is infeasible.

Lemma 3.6.16 (2cffa to 2cfra). Given a 2cffa instance
(
Gf , F f ,uf , s1, t1, s2, t2, ϵ

f
)
,

we can reduce it to a 2cfra instance (Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2, ϵ
r) by letting

ϵr = Ω

(
1

|Ef |

)
ϵf .

and using Lemma 3.6.14 to construct a 2cfr instance (Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2) from
the sff instance

(
Gf , F f ,uf , s1, t1, s2, t2

)
. If f r is a solution to the 2cfra (2cfr)

instance, then in time O(|Ef |), we can compute a solution f f to the 2cffa (2cff,
respectively) instance, where the exact case holds when ϵr = ϵf = 0.

Proof. To bound error in congestion, we have ϵfu ≤ ϵr by Lemma 3.6.3. Regarding to ϵfl ,

we have ϵfl = 0 if e ∈ Ef\F f ; whereas for an arbitrary fixed flow edge e ∈ F f , by solution
mapping, we have

f f (e) = f r(e1) = f r
1(e1) + f r

2(e1)

≥
∑

i∈{1,2}

(f r
i (e4) + f r

i (e5)− f r
i (e3)− ϵr)

≥ f r
1(e4) + f r

2(e5)− f r(e3)− 2ϵr,

(3.5)

where the last step follows from the non-negativity of f r
1(e5) and f r

2(e4).

Now, to bound f r
1(e4) and f r

2(e5), we have to make use of the requirement constraint
of t̄1, t̄2. By definition, ∣∣∣∣∣∑

e∈Ef

f r
1(e4) + f r(z1, t̄1)− 2M f

∣∣∣∣∣ ≤ ϵr,

∣∣∣∣∣∑
e∈Ef

f r
2(e5) + f r(z2, t̄2)− 2M f

∣∣∣∣∣ ≤ ϵr.

54 3. Hardness Results for Two-Commodity Flow

Rearranging and taking the lower bound direction, we have

f r
1(e4) ≥ 2M f − ϵr −

∑
ê∈Ef\e

f r
1(e4)− f r(z1, t̄1)

≥ max
{
0, 2M f − ϵr −

(
M f − uf (e) + (|Ef | − 1)ϵr

)
− (M f + ϵr)

}
= max

{
0,uf (e)− (|Ef |+ 1)ϵr

}
.

Similarly, we have f r
2(e5) ≥ max

{
0,uf (e)− (|Ef |+ 1)ϵr

}
.

Plugging back to Eq. (3.5),

f f (e) ≥ max{0, 2
(
uf (e)− (|Ef |+ 1)ϵr

)
− f r(e3)− 2ϵr}

by lower bound of f r
1(e4) and f r

2(e5)

≥ max{0, 2
(
uf (ê)− (|Ef |+ 1)ϵr

)
− (uf (e) + ϵr)− 2ϵr}

by upper bound of f r(e3)

= max{0,uf (e)− (2|Ef |+ 5)ϵr}.

Hence, we can bound
ϵfl ≤ O

(∣∣Ef
∣∣) ϵr.

Next, we analyze error in demand. By Lemma 3.6.4 and solution mapping algorithm,
we have for i ∈ {1, 2},

ϵfd,i ≤ ϵr + max
v∈V f\{si,ti}

∑
e=(u,v)∈Ef

|f r
i (e1)− f r

i (e2)| . (3.6)

The problem is reduced to bounding |f r
i (e1)− f r

i (e2)|.

|f r
i (e1)− f r

i (e2)|
≤ |f r

i (e1) + f r
i (e3)− f r

i (e4)− f r
i (e5)|+ |f r

i (e4) + f r
i (e5)− f r

i (e3)− f r
i (e2)|

≤ ϵr + |f r
i (e4) + f r

i (e5)− f r
i (e3)− f r

i (e2)| by error in demand of vertex xy

≤ ϵr + |f r
i (e4) + f r

i (e5)− f r
i (e6)− f r

i (e7)|+ |f r
i (e6) + f r

i (e7)− f r
i (e3)− f r

i (e2)|
≤ 2ϵr + |f r

i (e4) + f r
i (e5)− f r

i (e6)− f r
i (e7)| , by error in demand of vertex xy′

By error in demand of t̄i and s̄i, we have

f r
1(e5), f r

1(e7) ≤ ϵr; f r
2(e4), f r

2(e6) ≤ ϵr.

Hence,
|f r

1(e1)− f r
1(e2)| ≤ 4ϵr + |f r

1(e4)− f r
1(e6)| ,

|f r
2(e1)− f r

2(e2)| ≤ 4ϵr + |f r
2(e5)− f r

2(e7)| .
Claim 3.6.17.∑

e∈Ef

|f r
1(e4)− f r

1(e6)| ≤ 6|Ef |ϵr,
∑
e∈Ef

|f r
2(e5)− f r

2(e7)| ≤ 6|Ef |ϵr.

Combining the above bounds and Claim 3.6.17 and plugging back to Eq. (3.6), we
have

ϵfd,1, ϵfd,2 ≤ O
(∣∣Ef

∣∣) ϵr.
Putting it altogether, we have

ϵf = max{ϵfu, ϵ
f
l , ϵ

f
d,1, ϵ

f
d,2} ≤ O

(∣∣Ef
∣∣) ϵr.

3. Hardness Results for Two-Commodity Flow 55

Proof of Claim 3.6.17. We divide all edges in Ef into two groups:

EI = {e ∈ Ef s.t. f r
1(e4) ≤ f r

1(e6)},

EII = {e ∈ Ef s.t. f r
1(e4) > f r

1(e6)}.
We denote

TI =
∑
e∈EI

f r
1(e4), SI =

∑
e∈EI

f r
1(e6);

TII =
∑
e∈EII

f r
1(e4), SII =

∑
e∈EII

f r
1(e6).

Then, ∑
e∈Ef

|f r
1(e4)− f r

1(e6)| = (SI − TI) + (TII − SII).

On one hand, by error in congestion, we have

SI + TII ≤
∑
e∈Ef

uf (e) + |Ef |ϵr = M f + |Ef |ϵr. (3.7)

On the other hand, applying error in demand on vertex ti and si, we have

TI + TII ≥ (2M f − ϵr)− f r
1(z1, t̄1) ≥ 2M f − ϵr −M f − ϵr = M f − 2ϵr,

SI + SII ≥ (2M f − ϵr)− f r
1(s̄1, z

′
1) ≥ 2M f − ϵr −M f − ϵr = M f − 2ϵr.

Thus,
SI + TII = SI + (TI + TII)− TI ≥M f − 2ϵr + (SI − TI),

SI + TII = (SI + SII) + TII − SII ≥M f − 2ϵr + (TII − SII).

Together with Eq. (3.7), we obtain

SI − TI ≤ SI + TII −M f + 2ϵr ≤M f + |Ef |ϵr −M f + 2ϵr = (|Ef |+ 2)ϵr,

TII − SII ≤ SI + TII −M f + 2ϵr ≤M f + |Ef |ϵr −M f + 2ϵr = (|Ef |+ 2)ϵr.

Hence, we have∑
e∈Ef

|f r
1(e4)− f r

1(e6)| = (SI − TI) + (TII − SII) ≤ 2(|Ef |+ 2)ϵr ≤ 6|Ef |ϵr,

which finishes the proof.

3.6.6 2CFR(A) to 2CF(A)

In this section, we show the reduction from a 2cfr instance (Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2)
to a 2cf instance (G2cf ,u2cf , ¯̄s1, t̄1, ¯̄s2, t̄2, R

2cf). To drop the required flow constraint, we
add to G2cf with two new sources ¯̄s1, ¯̄s2 and two new edges (¯̄s1, s̄1), (¯̄s2, s̄2) with capacity
R1, R2, respectively. We set R2cf = R1 +R2.

For solution mapping, if a 2cf solver returns f 2cf for the 2cf in-
stance (G2cf ,u2cf , ¯̄s1, t̄1, ¯̄s2, t̄2, R

2cf), then we return f r for the 2cfr instance
(Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2) by setting f r

i (e) = f 2cf
i (e),∀e ∈ Er, i ∈ {1, 2}. If the 2cf

solver returns “infeasible” for the 2cf instance, then we return “infeasible” for the 2cfr
instance.

Note that the required flow constraint is not an edge constraint, so conclusions from
Section 3.6.1 cannot be directly applied. Instead, we analyze this step directly.

56 3. Hardness Results for Two-Commodity Flow

Lemma 3.6.18 (2cfr to 2cf). Given a 2cfr instance (Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2), we
can construct, in time O(|Er|), a 2cf instance (G2cf ,u2cf , ¯̄s1, t̄1, ¯̄s2, t̄2, R

2cf) such that∣∣E2cf
∣∣ = O (|Er|) ,

∥∥u2cf
∥∥
max

= max{R1, R2}, R2cf = R1 +R2.

If the 2cfr instance has a solution, then the 2cf instance has a solution.

Proof. The runtime for reduction and solution mapping is trivial, as we only add two
vertices and two edges. And by construction,

∥∥u2cf
∥∥
max

= max{R1, R2}.
If there exists a solution f r to the 2cfr instance such that F r

1 ≥ R1, F
r
2 ≥ R2, then

there also exists a solution f 2cf to the 2cf instance because F 2cf
1 = R1, F

2cf
2 = R2, and

thus F 2cf
1 + F 2cf

2 = R2cf .

Lemma 3.6.19 (2cfra to 2cfa). Given a 2cfra instance
(Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2, ϵ

r), we can reduce it to a 2cfa instance
(G2cf ,u2cf , ¯̄s1, t̄1, ¯̄s2, t̄2, R

2cf , ϵ2cf) by letting

ϵ2cf = Ω(ϵr),

and using Lemma 3.6.18 to construct a 2cf instance (G2cf ,u2cf , ¯̄s1, t̄1, ¯̄s2, t̄2, R
2cf) from

the 2cfr instance (Gr,ur, s̄1, t̄1, s̄2, t̄2, R1, R2). If f 2cf is a solution to the 2cfa (2cf)
instance, then in time O(|Er|), we can compute a solution f r to the 2cfra (2cfr,
respectively) instance, where the exact case holds when ϵ2cf = ϵr = 0.

Proof. Error in congestion does not increase since flows and edge capacities are unchanged
for those edges other than (¯̄s1, s̄1), (¯̄s2, s̄2). Hence, ϵ

r ≤ O(ϵ2cf).
Then for error in demand, notice that only the incoming flow of vertex s̄1, s̄2 changes

by solution mapping. Therefore, error in demand does not increase for vertices other than
s̄1, s̄2, thus we only need to bound the error in demand of s̄1, s̄2. We consider commodity
i, i ∈ {1, 2}. We first bound the error in demand of vertex s̄i.∣∣∣∣∣∣

∑
w:(s̄i,w)∈E

f 2cf
i (s̄i, w)−Ri

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

w:(s̄i,w)∈E

f 2cf
i (s̄i, w)− f 2cf

i (¯̄si, s̄i)

∣∣∣∣∣∣+
∣∣∣f 2cf

i (¯̄si, s̄i)−Ri

∣∣∣
≤ ϵ2cf +

∣∣∣f 2cf
i (¯̄si, s̄i)−Ri

∣∣∣ , by error in demand of vertex s̄i

For
∣∣∣f 2cf

i (¯̄si, s̄i)−Ri

∣∣∣, by error in congestion, we have

f 2cf
i (¯̄si, s̄i)−Ri ≤ ϵ2cf .

In the other direction, we have

f 2cf
i (¯̄si, s̄i)−Ri ≥ F 2cf

i − ϵ2cf −Ri by error in demand of vertex ¯̄si

= R2cf − F 2cf
ī
−Ri − ϵ2cf by construction

= Rī − F 2cf
ī
− ϵ2cf by R1 +R2 = R2cf

≥ f 2cf
ī

(¯̄si, s̄i)− F 2cf
ī
− 2ϵ2cf by error in congestion of edge (¯̄si, s̄i)

≥ −3ϵ2cf , by error in demand of vertex ¯̄sī

3. Hardness Results for Two-Commodity Flow 57

Therefore, we have
∣∣∣f 2cf

i (¯̄si, s̄i)−Ri

∣∣∣ ≤ 3ϵ2cf , and thus∣∣∣∣∣∣
∑

w:(s̄i,w)∈E

f 2cf
i (s̄i, w)−Ri

∣∣∣∣∣∣ ≤ 4ϵ2cf .

To bound the error in demand of vertex s̄ī, we have
∑

w:(s̄ī,w)∈E f r
i (s̄ī, w) ≤ 2ϵ2cf

because error in demand is accumulated twice over two vertices ¯̄sī, s̄ī.
To conclude,

ϵr ≤ O(ϵ2cf).

3.7 A Unified Framework for LP Transformations

In Section 3.5 and 3.6, we described a series of reduction steps in both the linear algebra
space and the flow space. While we have identified certain reduction patterns in Section
3.5.1 and 3.6.1, each step uses its own gadget and error propagation arguments. We aim
to provide a unified characterization of problem reduction and how the reductions can be
analyzed systematically.

Note that every intermediate problem we consider (both in the algebra space and in
the flow space) can be represented as a feasibility LP of the form:

{x : Ax ≤ b},

where A and b define linear inequalities enforcing the constraints of that problem. Note
that a linear equality constraint Ax = b is equivalent to the pair of inequalities Ax ≤ b
and −Ax ≤ −b. Similarly, non-negativity constraints x ≥ 0 can be expressed as
−I x ≤ 0.

This section introduces a framework that enables us to view each reduction step
as an LP-to-LP transformation characterized by linear mappings on both variables and
constraints. This viewpoint simplifies the correctness and error-propagation analyses,
showing that each step follows the same underlying principles.

3.7.1 Characterizing LP Transformations

Suppose we have an original problem A in LP form:

FA = {xA ∈ RnA

: AAxA ≤ bA}, where AA ∈ RmA×nA

, bA ∈ RmA

.

We want to reduce it to a new problem B, also representable as an LP:

FB = {xB ∈ RnB

: ABxB ≤ bB},where AB ∈ RmB×nB

, bB ∈ RmB

.

By construction, typically nA ≤ nB and mA ≤ mB, as we add auxiliary variables and
constraints in the new problem.

LP transformation can be characterized with two linear operators: variable operator
T and constraint operator P .

58 3. Hardness Results for Two-Commodity Flow

Variable Operator T . Each reduction step embeds the original variable vector xA

into the larger variable vector xB. Concretely, we define T ∈ RnA×nB
such that

xA = TxB. (3.8)

Typically, by design, each row of T typically has a single 1 and the rest zeros, so that
each xA(j) is copied from the appropriate position in xB. Equivalently, we can view xB

as

xB =

[
xA

x aux

]
.

Hence, applying T just discards the auxiliary variables when extracting xA from xB.

Constraint Operator P . We regard the original system AAxA ≤ bA as being derived
from AB (and bB) by applying a linear operator P ∈ RmA×mB

≥0 . Specifically, we require

AAT = PAB, bA = PbB. (3.9)

That is, each constraint of problem A is obtained by taking a non-negative linear combi-
nation of constraints in problem B. The non-negativity of P is essential when working
with inequalities, as it guarantees that feasibility is preserved: if ABxB ≤ bB, then
P(ABxB) ≤ PbB, ensuring that AAxA ≤ bA.

We remark that for transformation among equality constraints, the sign of P is irrel-
evant. In this case, if ABxB = bB, then any linear operator P can preserve feasibility
P(ABxB) = PbB.

3.7.2 Unified Correctness Analysis

Recall that the correctness analysis of a reduction algorithm involves verifying that prob-
lem A has a feasible solution if and only if the reduced problem B also has a feasible
solution. In other words, there are two main points to check:

1. Forward feasibility: From any feasible xA for problem A, we can construct a feasible
xB for problem B. Usually, this forward-feasibility construction is direct or “gadget-
based”8.

2. Backward feasibility: Given a feasible xB for problem B, we must show xA = TxB

is feasible for problem A.

Lemma 3.7.1 (Correctness of Reduction Algorithm). Let T and P satisfy the relations
in Equation (3.8) and (3.9). Additionally, assume there is a forward-feasibility mapping
L : RnA → RnB

such that L(FA) ⊆ FB. Then problem A has a feasible solution if and
only if the reduced problem B also has a feasible solution.

Proof. If xA is a feasible solution to A, by L(FA) ⊆ FB, then a feasible solution to B
can be constructed by applying L to xA as xB = L(xA).

8In each step of Sections 3.5 and 3.6, the solution construction approach is detailed in the proofs of
the lemmas for the exact cases.

3. Hardness Results for Two-Commodity Flow 59

It remains to show that if xB is a feasible solution to B, then TxB is a feasible
solution to A, i.e., T (FB) ⊆ FA. For any feasible solution xB ∈ FB, we have

ABxB ≤ bB

⇓
PABxB ≤ PbB by non-negativity of P

⇓
AATxB ≤ bA by Eq. (3.9)

⇓
AAxA ≤ bA by Eq. (3.8)

3.7.3 Unified Error Analysis

We extend the above analysis for feasible solutions to solutions with additive approxima-
tions. We say x is an ϵ-approximate solution if9

Ax − b ≤ ϵ1.

Given xB an ϵB-approximate solution to problem B, the goal of the error analysis is
to understand how the approximation error of xA = TxB depends on ϵB.

Lemma 3.7.2 (Error Analysis). Let xB be an ϵB-approximate solution to problem B,
then xA = TxB is an ϵA-approximate solution to problem A with

ϵA ≤ ∥P∥∞ ϵB.

Proof. We have

ABxB − bB ≤ ϵB1nB

⇓
P(ABxB − bB) ≤ ϵBP1nB by non-negativity of P

⇓
AATxB − bA ≤ ϵB ∥P∥∞ 1nA by Eq. (3.9)

⇓
AAxA − bA ≤ ϵB ∥P∥∞ 1nA by Eq. (3.8)

Therefore, bounding ∥P∥∞ by a modest polynomial factor at each step ensures the
overall additive error does not grow too large throughout the entire chain of reductions.
Lemma 3.7.2 unifies the more specialized error analyses found in each step of Sections
3.5 and 3.6.

9If we assume the non-negativity constraints are always satisfied, which is the case in our proofs in
Section 3.5 and 3.6, the right-hand side vector can be further tightened.

60 3. Hardness Results for Two-Commodity Flow

3.7.4 Examples

As an illustration, we revisit several steps in the reduction chain and analyze them using
this unified framework.

LP(A) to LEN(A)

We revisit the step that transform an lp instance {c⊤x ≥ K,Ax ≤ b,x ≥ 0} to an
len instance {Ãx̃ = b̃, x̃ ≥ 0}. To be compatible with the form used in the framework,
we rewrite the constraints in lp instance (problem A) as−c⊤

A
−I

x ≤

−Kb
0

 ⇒ AA =

−c⊤

A
−I

 , bA =

−Kb
0

 .

The len instance (problem B) is defined by appending slack variables s ≥ 0 and α ≥ 0.
We have

Ã =

[
−c⊤ 0 1
A I 0

]
, b̃ =

[
−K
b

]
.

Constructing AB, bB from Ã, b̃ is straightforward:

AB =

 Ã

−Ã
−I

 , bB =

 b̃

−b̃
0

 .

The operator P performs row additions on AB to match rows in AAT . Concretely,
each row of AAT is constructed by adding the corresponding row in AB to a specific row
of −I , ensuring that any extra non-zero entry in the auxiliary variables is canceled out.

The forward-feasibility mapping L is described in the proof of Lemma 3.5.1. Thus,
by Lemma 3.7.1, the correctness of the reduction can be proven. Moreover, since ∥P∥∞
is a constant here, the approximate error ϵA grows only by a constant factor from ϵB,
consistent with Lemma 3.5.2.

LEN(A) to 2-LEN(A)

We use a concrete example to illustrate the construction of the constraint operator P for
this step. Starting with a linear constraint 5x 1 + 3x 2 − 7x 3 = −1. In matrix form, this
can be rewritten as [

5 3 −7
] x 1

x 2

x 3

 =
[
−1
]
.

The reduction algorithm of bitwise decomposition (see Eq. (3.2)) leads to the following
reduced problem:


1 1 −1 | −2 2 0 0 |
0 1 −1 | 1 −1 −2 2 |
1 0 −1 | 0 0 1 −1 |

| I 4 | I 4





x 1

x 2

x 3

c0

d 0

c1

d 1

s


=


−1
0
0

X̄14

 .

3. Hardness Results for Two-Commodity Flow 61

The first three rows represent the bitwise decomposition constraints, corresponding to
bit weights 20, 21 and 22, respectively; and the last block row with identity matrices I
corresponds to slack variables s added to carry terms c,d .

Notice that

[
20 21 22 0⊤

4

] 
1 1 −1 | −2 2 0 0 |
0 1 −1 | 1 −1 −2 2 |
1 0 −1 | 0 0 1 −1 |

| I 4 | I 4

 =
[
5 3 −7 0⊤

4 0⊤
4

]
,

and

[
20 21 22 0⊤

4

] 
−1
0
0

X̄14

 =
[
−1
]
.

They correspond to PAB = AAT and PbB = bA, respectively. Hence, we can construct
the constraint operator P (up to column rearrangements) as

P =

[
20 21 22 0⊤

4

I 3

]
,

where the first row corresponds to the reverse of the bitwise decomposition process,
summing up contributions weighted by 2i; the last block I 3 corresponds to non-negativity
constraints for x .

We have

∥P∥∞ = O(X̄),

where X̄ is the magnitude of len. Again, it matches the bound stated in Lemma 3.5.4.

2-LEN(A) to 1-LEN(A)

The reduction from a 2-len instance (Ā, b̄, R̄) to a 1-len instance (Â, b̂, R̂) is relatively
straightforward. We illustrate with a concrete example from the previous step: x 1+x 2−
x 3 − 2(c0 − d 0) = −1. In matrix form,

[
1 1 −1 −2 −2

]

x 1

x 2

x 3

c0

d 0

 =
[
−1
]
.

Introducing auxiliary variables c′
0 and d ′

0, we reduce it to

x 1 + x 2 − x 3 − c0 − c′
0 + d 0 + d ′

0 = −1
c0 − c′

0 = 0

d 0 − d ′
0 = 0,

62 3. Hardness Results for Two-Commodity Flow

or in matrix form,

1 1 −1 −1 −1 1 1
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1




x 1

x 2

x 3

c0

c′
0

d 0

d ′
0


=

−10
0

 .

Notice that a linear combination of the reduced problem recovers the original problem.
Specifically,

[
1 1 1

] 1 1 −1 −1 −1 1 1
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

 =
[
1 1 −1 −2 −2 0 0

]
.

The constraint operator P can thus be constructed accordingly. In the general case,
each coefficient of ±2 in the 2-len instance leads to the introduction of two auxiliary
variables and two additional equations in the 1-len instance. Consequently, each row
of P includes a number of non-zero entries proportional to the number of variables with
coefficients ±2. Since the number of such variables is trivially bounded by the number
of non-zeros N̄ in 2-len, we obtain a matching bound as Lemma 3.5.6:

∥P∥∞ ≤ O(N̄).

1-LEN(A) to FHF(A)

Recall the form of 1-len {Âx̂ = b̂, x̂ ≥ 0}, where Â ∈ Rm̂×n̂ and entries of Â are in
{0,±1}. For each linear equation in 1-len, saying∑

j∈J+

x̂ (j)−
∑
j∈J−

x̂ (j) = b,

or in matrix form, [
1⊤
|J+| −1⊤

|J−|
] [x̂ (J+)

x̂ (J−)

]
=
[
b
]
, x ≥ 0.

It is encoded by several flow constraints as follows:∑
j∈J+

x̂ (j) = f 1 + f 2, (flow conservation)

∑
j∈J−

x̂ (j) = f 3, (flow conservation)

f 1 = b, (fixed flow)

f 2 − f 3 = 0, (homologous flow)[
x̂
f

]
≤ u . (capacity)

3. Hardness Results for Two-Commodity Flow 63

In matrix form, the flow constraints are
1⊤
|J+| −1 −1 0

−1⊤
|J−| 0 0 1

1 0 0
0 1 −1



x̂ (J+)
x̂ (J−)
f 1

f 2

f 3

 =


0
0
b
0

 , 0 ≤
[
x̂
f

]
≤ u .

Observe that by taking a linear combination of the flow constraints, we can recover the
original 1-len equation. Specifically,

[
1 1 1 1

] 
1⊤
|J+| −1 −1 0

−1⊤
|J−| 0 0 1

1 0 0
0 1 −1

 =
[
1⊤
|J+| −1⊤

|J−| 0 0 0
]
.

For a single equation, we can derive the above constraint operator P and ∥P∥∞ =
Θ(1). When handling multiple equations, more homologous flow constraints are intro-
duced—each linking multiple flows corresponding to the same variable across different
sections of the network. This increases the complexity of the constraint operator P .
However, the number of non-zero entries in each row of P remains bounded by O(N̂),
where N̂ is the number of non-zeros in the matrix Â. Thus, in the general case,

∥P∥∞ ≤ O(N̂),

which matches the bound established in Lemma 3.5.9.

Dropping Homologous Flow Constraints

We show that every homologous flow constraint can be encoded as a linear combination
of a constant number of flow conservation constraints, selective flow constraints, and fixed
flow constraints.

Refer to Figure 3.5. Our target is to encode f p(e) = f p(ê), or before solution mapping,
f s
1(e1) = f s

1(ê1).
We start by flow conservation of vertex vw, vw′, yz, yz′:

f s
1(e1) + f s

1(e3) = f s
1(e4) = f s

1(e2) + f s
1(e5),

f s
2(e1) + f s

2(e3) = f s
2(e4) = f s

2(e2) + f s
2(e5),

f s
1(ê1) + f s

1(e5) = f s
1(ê4) = f s

1(ê2) + f s
1(e5),

f s
2(ê1) + f s

2(e5) = f s
2(ê4) = f s

2(ê2) + f s
2(e5).

(flow conservation)

Then plugging in the selective constraints on edge e1, e2, ê1, ê2 (i.e., f
s
2(e1) = f s

2(e2) =
f s
2(ê1) = f s

2(ê2) = 0) and on edge e3, e5, ê5 (i.e., f s
1(e3) = f s

1(e5) = f s
1(ê5) = 0), we have

f s
1(e1) =f s

1(e4) = f s
1(e2),

f s
1(ê1) =f s

1(ê4) = f s
1(ê2),

f s
2(e3) = f s

2(e4) =f s
2(e5) = f s

2(ê4) = f s
2(ê5).

(flow conservation + selective)

Finally, the fixed flow constraints on edge e4 and ê4 enforce f s
1(e4) + f s

2(e4) = u and
f s
1(ê4) + f s

2(ê4) = u. Combining with the above immediately yields

f s
1(e1) = f s

1(ê1), (flow conservation + selective + fixed)

64 3. Hardness Results for Two-Commodity Flow

which encodes the homologous flow constraint. Crucially, each original homologous-flow
constraint is encoded by O(1) constraints in the reduced problem, so the corresponding
row sum of P is bounded by a constant.

Dropping Selective Flow Constraints

Consider a selective edge e for commodity 1 (Figure 3.6). The target is to encode f s
2(e) =

0, or before solution mapping, f f
2(e1) = 0.

By flow conservation of vertex xy and t1, because t1 has no outgoing edges for com-
modity 2, we have

f f
2(e1) + f f

2(e3) = f f
2(e4) = 0. (flow conservation)

Since every flow is non-negative, it implies

f f
2(e1) = 0, (flow conservation + non-negativity)

which encodes the selective flow constraint.

Dropping Fixed Flow Constraints

Figure 3.7 shows the gadget that replaces an edge with the fixed capacity constraint

f f
1(e) + f f

2(e) = u.

Before the solution mapping, this means enforcing

f r
1(e1) + f r

2(e1) = u.

By flow conservation of vertex xy and no outgoing edges for commodity 2 and 1 for
t̄1 and t̄2, respectively, we have

f r
1(e1) + f r

1(e3) = f r
1(e4),

f r
2(e1) + f r

2(e3) = f r
2(e5).

(flow conservation)

Moreover, because of the required amount of flow, all incoming edges of t̄1, t̄2 saturate.
That is, t̄i receive exactly u units of commodity i:

f r
1(e1) + f r

1(e3) = f r
1(e4) = u,

f r
2(e1) + f r

2(e3) = f r
2(e5) = u.

(flow conservation + requirement + capacity)

Then combined with capacity constraint of edge e1 and e3 (i.e., f r
1(e1) + f r

2(e1) ≤
u, f r

1(e3) + f r
2(e3) ≤ u), this gives

f r
1(e1) + f r

2(e1) = u, (flow conservation + requirement + capacity)

which encodes the fixed flow constraint.

The examples above demonstrate that every special constraint can be encoded as
a linear combination of a constant number of other constraints. We omit the detailed
encoding of other ordinary constraints associated with the reduced edges, such as flow

3. Hardness Results for Two-Commodity Flow 65

conservation and capacity constraints. Due to the constant size of the gadgets, the
transformed graph GB contains O(

∣∣EA
∣∣) edges, thus O(

∣∣EA
∣∣) constraints. Therefore,

every original constraint can be recovered as the sum of at most O(
∣∣EA

∣∣) constraints in
GB, i.e.,

∥P∥∞ ≤ O(
∣∣EA

∣∣),
yielding the matching error bounds achieved in these reduction steps:

ϵA ≤ O(
∣∣EA

∣∣)ϵB.
3.7.5 Summary

Under this framework, we can treat each reduction step as a composition of two linear
mappings, one on the variables (T) and one on the constraints (P), plus the forward-
feasibility mapping L. Once we construct (T ,P ,L) for a reduction step, its correctness
follows immediately from Lemma 3.7.1.

In addition, this framework provides a systematic approach to analyzing error prop-
agation. Rather than redoing an error analysis from scratch for each reduction gadget,
it suffices to bound the ℓ∞ norm of the constraint operator ∥P∥∞ at each step. This
immediately yields how ϵB translates into ϵA.

Intuitively, the role of ∥P∥∞ in bounding error growth corresponds to how we break
down an error term into several intermediate terms in our actual proofs:∣∣AA(i)xA − bA(i)

∣∣ ≤∑
j∈J

∣∣AB(j)xB − bB(j)
∣∣ ,

where J is the set of indices of constraints in B that are related to the ith constraint in
A. Combining these terms is equivalent to forming a linear combination of constraints in
problem B—an operation precisely captured by the constraint operator P .

Although constructing P still requires step-specific analysis for individual reduction
gadgets, the framework serves as a powerful tool both for validating existing reductions
and for guiding the design and verification of new reduction steps within the chain of LP
reductions.

66 3. Hardness Results for Two-Commodity Flow

Chapter 4

Hardness Results for Combinatorial
Laplacians

This chapter is based on [Din+22]. We focus on proving Theorem 1.4.4. Specifically,
we describe the reduction algorithm and analyze it for approximate solvers in Section
4.5. Then in Section 4.6, we slightly modify the reduction for approximate solvers to
handle the general case, when the right-hand side vector may not be in the image of
the coefficient matrix. Theorem 1.4.2 can be derived from Theorem 1.4.4 and standard
arguments in linear algebra, with the proof provided in Appendix B.1.

4.1 Prior Works

Kyng and Zhang [KZ17] initiated the study of hardness results for solving structured lin-
ear equations. They showed that 2-commodity Laplacians, 2-dimensional truss stiffness
matrices, and 2-total-variation matrices are all sparse-linear-equation complete. [KWZ20]
considered a larger family of hardness assumptions based on linear equations. Through
defining a parameterized family of hypotheses for runtime of solving sparse linear equa-
tions, they prove the hardness of approximately solving packing and covering linear pro-
grams. For example, if one can solve a packing linear program up to ϵ accuracy in time
Õ(number of non-zeros× ϵ−0.165), then one can solve a system of linear equations in time
asymptotically faster than Õ(number of non-zeros× condition number of matrix), which
is the runtime of conjugate gradient.

4.2 Our Contributions

We prove that solving linear equations in boundary operators and combinatorial Lapla-
cians of 2-complexes is as hard to solve as general linear equations. As discussed in
Section 1.1, there are extensive applications of combinatorial Laplacians in both pure
math and applied areas. In addition, the problem of solving linear equations in ∂2∂

⊤
2

also arises when using Interior Point Methods to solve a generalized max-flow problem
in higher-dimensional simplicial complexes as defined in [MN21]. We sketch how this in-
verse problem arises when using an Interior Point Method in Appendix B.2. By a similar
argument as Lemma 1.4.5, we can show that if we can solve linear equations in ∂2∂

⊤
2

to high accuracy in nearly-linear time, then we can solve linear equations in ∂2 to high
accuracy in nearly-linear time.

67

68 4. Hardness Results for Combinatorial Laplacians

Our reduction is inspired by a reduction in [MN21] that proves NP-hardness of com-
puting maximum integral flows in 2-complexes via a reduction from the graph 3-coloring
problem. However, the correctness of their reduction heavily relies on the fact that the
flow values in the 2-complex are 0-1 integers, which does not apply in our setting. In
addition, it is unclear how to encode linear equations as a graph coloring problem even
if fractional colors are allowed.

We employ some basic building blocks used in [MN21], including punctured spheres
and tubes. However, we need to carefully arrange and orient the triangles in the 2-complex
to encode both the positive and negative coefficients in difference-average equations, and
we need to express the averaging relations not covered by the previous work.

An important aspect of our contribution is that we carefully control the number of
non-zeros of the boundary operator matrix that we construct, and we bound the condition
number of this matrix, and how the error propagates from an approximate solution to the
boundary operator problem back to the original difference-average equations. In order
to do so, we develop explicit triangulation algorithms that specify the precise number
of triangles needed to triangulate each building block and allow a detailed error and
condition number analysis.

We remark that our constructed 2-complex does not admit an embedding into a sphere
in 3 dimensions. Recent work [Bla+22] has shown that simplicial complexes with a known
embedding into R3 have non-trivial linear equation solvers, but the full extent to which
embeddability can lead to better solvers remains an open question.

We analyze our construction in the RealRAM model. However, it can be transferred
to the fixed point arithmetic model with (logN)O(1) bits per number, where N is the size
of the problem instance.

4.3 Notations and Preliminaries

4.3.1 Matrix Classes

We are interested in linear equations whose coefficient matrices belong to the following
matrix classes.

1. G refers to the class of General Matrices that have integer entries and do not have
all-0 rows and all-0 columns. We refer to linear equations whose coefficient matrix
is in G as general linear equations.

2. DA refers to the class of Difference-Average Matrices whose rows fall into two
categories:

(a) A difference row which has exactly two non-zero entries 1 and −1;
(b) An average row which has exactly three non-zero entries 1, 1, and −2.

Multiplying a difference row vector to a column vector x gives x (i) − x (j); mul-
tiplying an average row vector to x gives x (i) + x (j) − 2x (k). We refer to linear
equations whose coefficient matrix is in DA as difference-average linear equations.

3. B2 refers to the class of Boundary Operator Matrices ∂2 in 2-complexes. We refer
to linear equations whose coefficient matrix is in B2 as 2-complex boundary linear
equations.

4. Hardness Results for Combinatorial Laplacians 69

Our definition of “general matrices” specifies that the matrix must have integer entries.
However, when the input matrix is invertible, using a simple rounding argument, we can
convert any linear equation into a linear equation with integer entries Õ(1) bits per

entry. We caution the reader that this relies on our definition of Õ(·) as hiding poly-
logarithmic factors in the input condition number. In general, the condition number can
be exponentially large – however, our results are mainly of interest when the condition
number is quasipolynomially bounded.

4.3.2 Reduction Between Linear Equations

We will again follow the definition of efficient reductions in [KZ17].
We say lea over matrix classM1 is nearly-linear time reducible to lea over matrix

classM2, denoted byM1 ≤nltM2, if the following holds:

1. There is an algorithm that maps an arbitrary instance lea (M 1, c1, ϵ1) where
M 1 ∈ M1 to an instance lea (M 2, c2, ϵ2) where M 2 ∈ M2 such that there is
another algorithm that can map a solution to lea (M 2, c2, ϵ2) to a solution to
lea (M 1, c1, ϵ1).

2. Both the two algorithms run in time Õ(nnz(M 1)).

3. In addition, we can guarantee nnz(M 2) = Õ(nnz(M 1)), and

ϵ−1
2 , κ(M 2), U(M 2, b2) = poly(nnz(M 1), ϵ

−1
1 , κ(M 1), U(M 1, b1)).

We do not require a nearly-linear time reduction to preserve the number of variables
or constraints (dimensions) of a system of linear equations. The dimensions of the new
linear equation instance that we construct can be much larger than that of the original
instance. On the other hand, a reduction that only preserves dimensions may construct a
dense linear equation instance even if the original instance is sparse. A nearly-linear time
reduction that preserves both the number of non-zeros and dimensions would be stronger
than what we achieve.

Fact 4.3.1. IfM1 ≤nltM2 andM2 ≤nltM3, thenM1 ≤nltM3.

Definition 4.3.2 (Sparse-Linear-Equation Complete (sle-complete)). We say lea over
a matrix classM is sparse-linear-equation complete if G ≤nltM.

Fact 4.3.3. Suppose lea over M is sle-complete. If one can solve all instances
lea (A, b, ϵ) with A ∈ M in time Õ(nnz(A)c) where c ≥ 1, then one can solve all
instances lea (A′, b ′, ϵ′) with A′ ∈ G in time Õ(nnz(A′)c).

Under the above definitions, [KZ17] implicitly shows the following result.

Theorem 4.3.4 (Implicitly Stated in [KZ17]). lea over DA is sle-complete.

4.4 Main Results and Reduction Outline

Our main result is stated in the following theorem.

Theorem 4.4.1. lea over B2 is sle-complete.

70 4. Hardness Results for Combinatorial Laplacians

Although our main theorem focuses on linear equation approximate problems, we
construct nearly-linear time reductions for both linear equation problem le and its ap-
proximate counterpart lea. We first reduce le instances (A, b) (and lea instances
(A, b, ϵ)) over difference-average matrices to those over 2-complex boundary operator
matrices, under the assumption b ∈ Im(A) (stated in Theorem 4.4.2 and 4.4.3). In this
case, the constructed 2-complexes have unit edge weights. We then provide a slightly
modified nearly-linear time reduction for lea (A, b, ϵ) over difference-average matrices
to lea over 2-complex boundary operator matrices without assuming b ∈ Im(A) (stated
in Theorem 4.4.4). In this case, we introduce polynomially bounded edge weights for the
constructed 2-complexes.

Theorem 4.4.2. Given a linear equation instance le (A, b) where A ∈ DA and b ∈
Im(A), we can reduce it to an instance le (∂2, γ) where ∂2 ∈ B2, in time O(nnz(A)), such
that a solution to le (∂2, γ) can be mapped to a solution to le (A, b) in time O(nnz(A)).

Theorem 4.4.3. Given a linear equation instance lea (A, b, ϵDA) where A ∈ DA and
b ∈ Im(A), we can reduce it to an instance lea (∂2, γ, ϵ

B2) where ∂2 ∈ B2 and ϵB2 ≤
ϵDA

42 nnz(A)
, in time O(nnz(A)), such that a solution to lea (∂2, γ, ϵ

B2) can be mapped to a

solution to lea (A, b, ϵDA) in time O(nnz(A)).

Theorem 4.4.4. Given an instance lea (A, b, ϵDA) where A ∈ DA, we can re-
duce it to an instance lea (W 1/2∂2,W

1/2γ, ϵB2) where ∂2 ∈ B2 and W is a di-
agonal matrix with non-negative diagonals, in time O(nnz(A)). Let s, ϵ,K, U denote
nnz(A), ϵDA, κ(A), U(A, b), respectively. Then, we can guarantee that

nnz(∂2) = O(s), U(W 1/2∂2,W
1/2γ) = O

(
sUϵ−1

)
,

ϵB2 = Ω(ϵU−1s−1), κ(W 1/2∂2) = O
(
s15/2K2ϵ−2

)
and a solution to lea (W 1/2∂2,W

1/2γ, ϵB2) can be mapped to a solution to
lea (A, b, ϵDA) in time O(nnz(A)).

We will prove Theorem 4.4.2 and Theorem 4.4.3 in Section 4.5, and we will prove
Theorem 4.4.4 in Section 4.6.

4.4.1 Overview of Our Proof

Multiplying a 2-complex boundary operator ∂2 ∈ Rm×t to a vector f ∈ Rt can be inter-
preted as transforming flows in the triangle space to demands in the edge space. Given
d ∈ Rd, solving ∂2f = d can be interpreted as finding flows in the triangle space subject
to edge demands in d . We will encode difference-average linear equations as a 2-complex
flow network.

Encoding a Single Equation. We observe a simple fact: If we glue two triangles
∆1,∆2 with the same orientation, then the net flow ∂2f on the shared interior edge
is f (∆1) − f (∆2) (see Figure 4.1 (a)); if we glue two triangles ∆1,∆2 with opposite
orientations, then the net flow ∂2f on the shared interior edge is f (∆1)+f (∆2) (see Figure
4.1 (b)). Given an equation aaa⊤x = b with the non-zero coefficients being ±1, we can

4. Hardness Results for Combinatorial Laplacians 71

encode it by gluing more triangles as above and setting the demand of the shared interior
edge to be b. To handle the coefficient −2 in an average equation, say x (i)+x (j)−2x (k),
we implicitly interpret it as x (i) + x (j) − x (k1) − x (k2) together with an additional
difference equation x (k1) = x (k2) (see Figure 4.1 (c)).

(a) (b) (d)(c)

Figure 4.1: An illustration for encoding a single equation and encoding a variable.

Encoding a Variable. We use a sphere to encode a variable involved in many equa-
tions. We can obtain an oriented triangulation of the sphere and set all the edge demand
to be 0 so that all the triangles on the sphere must have an equal flow value (see Figure
4.1 (d)).

Putting It All Together. For each variable x (i) and the sphere for x (i), we create
a “hole” for each equation that involves x (i), and then attach a tube. We can have an
oriented triangulation of the tubes so that the triangles on the tubes have equal value as
the triangles on the sphere. We then connect these tubes properly to encode each given
difference and average equation.

Discussion.

• Why encode difference-average equations rather than directly encoding general equa-
tions with integer coefficients?
We can generalize the above encoding method to encode a general equation g⊤y = c
with arbitrary integer coefficients into a 2-complex with roughly ∥g∥1 tubes. How-
ever, the encoding size required to express a general system of linear equations
Gy = c this way can be as large as Ω(nnz(G) ∥G∥max). This dependence on
∥G∥max is prohibitive, and makes for a fairly weak result.

On the other hand, we can first reduce the general linear equations Gy = c into
difference-average linear equations Ax = b, where ∥A∥max = 2 and nnz(A) =
O (nnz(G) log ∥G∥max) (by Lemma 5.1.1). Then we can encode Ax = b into
a 2-complex. The encoding size required to express the difference-average linear
equations as a 2-complex is thus O(nnz(A)) (by Lemma 4.5.2). Thus, the over-
all encoding size required to express the original linear equation Gy = c is now
Õ (nnz(G)), exponentially improving the dependence on ∥G∥max.

Therefore, the two-step reduction is a nearly-linear time reduction while the one-
step reduction is not.

• Why encode into a 2-complex rather than a 1-complex?
We do not expect that general linear equations with integer coefficients can be
efficiently encoded using a 1-complex. This would immediately imply a nearly-linear

72 4. Hardness Results for Combinatorial Laplacians

time solver for general linear equations, as fast solvers for 1-complex operators exist
(using Laplacian linear equation solvers).

4.5 Reducing DA to B2 in Feasible Case

In this section, we show that the algorithm ReduceDAToB2 and the algorithm
MapSolnB2toDA reduce instances lea (A, b, ϵ) over DA to instances lea (∂2, γ, ϵ

′)
over B2, under the assumption that b is in the image of A. Specifically, we show that
by a proper choice of ϵ, a solution to lea (A, b, ϵ) can be converted to a solution to
lea (∂2, γ, ϵ

′) in Section 4.5.5; we upper bound the condition number of ∂2 in Section
4.5.6.

Recall that an instance le (A, b) over DA only consists of two types of linear equa-
tions:

1. Difference equation: x (i)− x (j) = b(q);

2. Average equation: x (i) + x (j)− 2x (k) = 0.

Suppose le (A, b) has d1 difference equations and d2 average equations. Without
loss of generality, we reorder all the equations so that the first d1 equations are difference
equations and the rest are average equations.

4.5.1 Reduction Algorithm

Given an instance le (A, b) where A is a d × n matrix in DA, the following algorithm
ReduceDAToB2 constructs a 2-complex and a system of linear equations in its bound-
ary operator.

Algorithm ReduceDAToB2
Input: an instance le (A, b) where A ∈ DA is a d× n matrix and b ∈ Rd.
Output: (∂2, γ,∆

c) where ∂2 ∈ B2 is an m × t matrix, γ ∈ Rm, and ∆c is a set of n
triangles.

1. For each i ∈ [n] and variable x (i) in le (A, b), we construct a sphere Si.

2. For each q ∈ [d1], which corresponds to a difference equation x (i) − x (j) = b(q),
we add a loop αq with a net flow demand b(q). Then,

(a) we add a boundary component βq,i on Si, and a boundary component βq,j on
Sj;

(b) we construct a tube Tq,i with boundary components {−βq,i, αq}, and a tube
Tq,j with boundary components {−βq,j,−αq}.

See Figure 4.2 for an illustration.1

3. For each q ∈ {d1+1, . . . , d}, which corresponds to an average equation x (i)+x (j)−
2x (k) = b(q) = 0, we add a loop αq with zero net flow demand. Then,

1Note that since the loop αq has demand b(q), our construction is different from identifying the
boundary component αq of Tq,i and the boundary component −αq of Tq,j .

4. Hardness Results for Combinatorial Laplacians 73

βq,i βq,j

αq

∂Tq,i = −βq,i + αq ∂Tq,j = −βq,j − αq

∂Si 3 βq,i ∂Sj 3 βq,j

Figure 4.2: The construction for a difference equation x (i)− x (j) = b(q).

(a) we add a boundary component βq,i on Si, a boundary component βq,j on Sj,
and two boundary components βq,k,1, βq,k,2 on Sk;

(b) we construct a tube Tq,i with boundary components {−βq,i, αq}, a tube Tq,j
with boundary components {−βq,j, αq}, and two tubes Tq,k,1, Tq,k,2 with bound-
ary components {−βq,k,1,−αq} and {−βq,k,2,−αq}, respectively.

See Figure 4.3 for an illustration.2

βq,i βq,j

βq,k,1 βq,k,2

αq

∂Tq,i = −βq,i + αq ∂Tq,j = −βq,j + αq

∂Si 3 βq,i ∂Sj 3 βq,j

∂Tq,k,1 = −βq,k,1 − αq ∂Tq,k,2 = −βq,k,2 − αq

∂Sk 3 {βq,k,1, βq,k,2}

Figure 4.3: The construction for an average equation x (i) + x (j)− 2x (k) = 0.

4. For each i ∈ [n], the punctured sphere Si and the tubes connected to Si form a
continuous topological space. We construct an oriented triangulation for this space

2As four tubes are connected to a single loop, to avoid the intersection of tubes before attaching the
loop, a higher-dimensional space is required.

74 4. Hardness Results for Combinatorial Laplacians

such that the induced orientation of each edge on a loop αq is consistent with the
orientation of αq. We will describe this oriented triangulation subroutine in Section
4.5.1. Let K be the oriented 2-complex. Let ∂2 be the boundary operator of K.

5. Each edge on a loop αq has net demand b(q); each other edge has net demand 0.
Let γ be the vector of the net flow demands.

6. On each triangulated sphere Si, we choose an arbitrary triangle ∆i ∈ Si as the
central triangle. Let ∆c be the set of all the central triangles.

7. We return (∂2, γ,∆
c).

The following algorithm MapSolnB2toDA maps a solution f to le (∂2, γ) to a
solution x to le (A, b).

Algorithm MapSolnB2toDA
Input: a tuple (A, b, f ,∆c), where A ∈ DA is a d× n matrix, b ∈ Rd, f ∈ Rt, and ∆c

is the set of n central triangles.
Output: a vector x ∈ Rn.

1. If A⊤b = 0, we return x = 0.

2. Otherwise, we set x (i) = f (∆i), where ∆i ∈ ∆c is the central triangle on sphere
Si.

Oriented Triangulation

We provide a concrete triangulation subroutine here for the benefit of analyzing our
reduction algorithm.

Oriented Triangulation for Punctured Spheres. By our construction, each sphere
Si has bi =

∑d
q=1 |A(q, i)| boundary components. We will create t̃i triangles and m̃i edges

on Si, based on bi.

1. If bi = 1 (see Figure 4.4 (a)), the punctured sphere is topologically equivalent to a
disk. In this case, Si can be triangulated using a single triangle [v1(1), v

2
(1), v

3
(1)], thus

t̃i = 1, m̃i = 3.

2. If bi = 2 (see Figure 4.4 (b)), the punctured sphere is topologically equivalent to
an annulus. We subdivide the triangle [v1(1), v

2
(1), v

3
(1)] obtained in the previous case

by adding 6 interior edges between vertices of the inner and the outer boundaries:
[v1(1), v

1
(2)], [v

1
(1), v

2
(2)], [v

2
(1), v

1
(2)], [v

2
(1), v

3
(2)], [v

3
(1), v

2
(2)], [v

3
(1), v

3
(2)], thus t̃i = 6, m̃i = 12.

3. Generally, if bi = k (see Figure 4.4 (c)), we subdivide the rightmost triangle
[v1(1), v

2
(1), v

1
(k−1)] obtained in the case of bi = k − 1 with the same method. By

induction, we have

t̃i = 5bi − 4, m̃i = 9bi − 6, for bi ≥ 1. (4.1)

4. Hardness Results for Combinatorial Laplacians 75

bi = 1

v1(1)

v3(1) v2(1)

v1(k)

v2(k) v3(k)

v1(2)

v2(2) v3(2)

v1(1)

v3(1) v2(1)

v1(1)

v1(k−1)

v2(1)

(a) bi = 2(b) bi = k(c)

Figure 4.4: Oriented triangulation of punctured spheres. The light area represents the
“holes” defined by boundary components.

The orientation for triangles on the same sphere should be identical. Without loss of
generality, we orient all triangles clockwise. Note that with this triangulation method,
all boundary components are composed of 3 edges.

Oriented Triangulation for Tubes. A tube is defined by two boundary components.
By our construction, for every tube connected to Si, one of the two boundary components
is always −βq,i,∗,

3 and the other one is ±αq, whose orientation depends on the sign of the
entryA(q, i). Without loss of generality, we orient anti-clockwise for all αq, thus clockwise
for all −αq. Therefore, there are two possibilities of boundary component combinations.

1. IfA(q, i) > 0 (see Figure 4.5 (a)), then the two boundary components have opposite
orientations: −βq,i,∗ = [v1q,i,∗, v

3
q,i,∗, v

2
q,i,∗] and αq = [v1q , v

2
q , v

3
q]. We triangulate by

matching v1q,i,∗ to v1q , v
2
q,i,∗ to v2q , and v3q,i,∗ to v3q .

2. IfA(q, i) < 0 (see Figure 4.5 (b)), then the two boundary components have identical
orientations: −βq,i,∗ = [v1q,i,∗, v

3
q,i,∗, v

2
q,i,∗] and −αq = [v1q , v

3
q , v

2
q]. We triangulate by

matching v1q,i,∗ to v1q , v
3
q,i,∗ to v2q , and v2q,i,∗ to v3q .

v1q

v2q v3q

v1q,i,∗

v2q,i,∗ v3q,i,∗

−βq,i

αq

v1q,i,∗ v3q,i,∗ v2q,i,∗ v1q,i,∗

v1qv1q v2qv3q

v1q,i,∗

v2q,i,∗ v3q,i,∗

−βq,i

v1q

v2q v3q

−αq

v1q,i,∗ v3q,i,∗ v2q,i,∗ v1q,i,∗

v1qv1q v3qv2q

A(q, i) > 0 A(q, i) < 0(a) (b)

Figure 4.5: Oriented triangulation of tubes with opposite or identical boundary orienta-
tions.

In either case, only 6 triangles and 12 edges are required for an oriented triangulation
of any tube Tq,i,∗. Again, we orient all triangles clockwise.

3We introduce a third element ∗ ∈ {1, 2} in the subscript of βq,k,∗, which is activated only when
A(q, k) = −2.

76 4. Hardness Results for Combinatorial Laplacians

4.5.2 Additional Notations

To facilitate our analysis, we introduce several notions and corresponding notations about
the constructed 2-complex. These notions and notations will be used in the rest of the
paper.

For each i ∈ [n], let Ki be the the union of the triangulated Si and the triangulated
tubes that are connected to Si, which we refer to as the ith complex group; let ti be the
number of triangles in Ki; let mi be the number of the interior edges in Ki.

We refer to an edge on a loop αq as a boundary edge and an edge not on any loop
an interior edge. According to our triangulation, each loop αq has three boundary edges,
denoted by α1

q = [v1q , v
2
q], α2

q = [v2q , v
3
q], α3

q = [v3q , v
1
q]. A triangle containing a boundary

edge is called a boundary triangle. For each boundary edge αr
q, where q ∈ [d1] and r ∈ [3],

corresponding to equation x (i) − x (j) = b(q), we denote the boundary triangles by
∆r

q,i,1,∆
r
q,j,1 where ∆

r
q,i,1 ∈ Tq,i, ∆r

q,j,1 ∈ Tq,j; for each boundary edge αr
q, where q ∈ [d1+1 :

d2] and r ∈ [3], corresponding to equation x (i) + x (j) = 2x (k), we denote the boundary
triangles by ∆r

q,i,1,∆
r
q,j,1,∆

r
q,k,1,∆

r
q,k,2 where ∆

r
q,i,1 ∈ Tq,i, ∆r

q,j,1 ∈ Tq,j, ∆r
q,k,1,∆

r
q,k,2 ∈ Tq,k.

Given any two triangles ∆,∆′ ∈ K, a triangle path from ∆ to ∆′ is an ordered collec-
tion of triangles P = [∆(0) = ∆,∆(1), . . . ,∆(l) = ∆′] such that every pair of neighboring
triangles shares an edge. The length of P is l. A triangle path can also be defined by
an ordered collection of edges P = [e(1), . . . , e(l)], where e(i) denotes the edge shared by
∆(i−1) and ∆(i), for i ∈ [l].

4.5.3 Algorithm Runtime and Problem Size

In this section, we firstly show that the reduction algorithm ReduceDAToB2 and
the solution mapping algorithm MapSolnB2toDA both run in linear time, and
ReduceDAToB2 constructs a 2-complex whose size is linear in the number of non-zeros
in the input linear equations.

Lemma 4.5.1 (Runtime). Given a difference-average instance le (A, b) where A ∈
Rd×n, Algorithm ReduceDAToB2(A, b) returns (∂2, γ,∆

c) in time O(nnz(A)). Given
a solution f to le (∂2, γ), Algorithm MapSolnB2toDA(A, b, f ,∆c) returns x in time
O(n).

Proof. For reduction, ReduceDAToB2(A, b) calls the tube triangulation subroutine
for ∥A∥1 times, and the punctured sphere triangulation subroutine for n times. The
tube triangulation subroutine runs in time O(1) since the there are a constant num-
ber of triangles in a tube; and the punctured sphere triangulation subroutine runs in
time O(∥A(:, j)∥1) for the jth call, j ∈ [n]. Putting all together, the total runtime of

ReduceDAToB2(A, b) is O
(
∥A∥1 +

∑
j∈[n] ∥A(:, j)∥1

)
≤ O(nnz(A)), where we use

the fact ∥A∥max = 2.
For solution mapping, the runtime of the algorithmMapSolnB2toDA is obvious.

Lemma 4.5.2 (Size of ∂2). Given a difference-average instance le (A, b), let (∂2, γ,∆
c)

be returned by ReduceDAToB2(A, b). Suppose ∂2 ∈ Rm×t. Then,

• t ≤ 22 nnz(A);

• m ≤ 33 nnz(A);

• nnz(∂2) ≤ 66 nnz(A).

4. Hardness Results for Combinatorial Laplacians 77

Proof. We first compute the total number of triangles in the constructed 2-complex K.
For sphere Sj, we have t̃j = 5bj − 4 triangles by (4.1), where bj =

∑
i∈[d] |A(i, j)|.

Therefore, the number of triangles of all spheres is

n∑
j=1

t̃j =
n∑

j=1

5
∑
i∈[d]

|A(i, j)| − 4

 = 5 ∥A∥1 − 4n.

Moreover, each boundary component on spheres corresponds to a tube, and each tube
has 6 triangles. Hence, the number of triangles of all tubes is 6 ∥A∥1. Putting spheres
and tubes together, we get

t = 11 ∥A∥1 − 4n ≤ 22 nnz(A),

where the last inequality is because entries of A are bounded by 2.
Next, we compute the total number of edges in K. By construction, each triangle has

3 incident edges and each edge is shared by a constant number of triangles (2 for interior
edges, and 4 for boundary edges). Thus, we have

m ≤ 1.5t ≤ 33 nnz(A).

Since each column of ∂2 has exactly 3 non-zero entries, we have

nnz(∂2) = 3t ≤ 66 nnz(A).

4.5.4 Relation Between Exact Solutions

In this section, we show that the algorithm ReduceDAToB2 and the algorithm
MapSolnB2toDA reduce instances le (A, b) over DA to instances le over B2 by ex-
ploring the relationship between exact solutions.

Given le (A, b) where A is a d × n matrix in DA, let (∂2, γ,∆
c) be re-

turned by ReduceDAToB2(A, b), and let K be the 2-complex constructed in
ReduceDAToB2(A, b) and the boundary operator of K is ∂2. Let f be a solution
to le (A, b).

To simplify the analysis, we reorder the columns and rows of ∂2. The columns [1 : t1]
of ∂2 correspond to the triangles in K1, the columns [t1+1 : t2] correspond to the triangles
in K2, and so on. Then, f can be written as

f =

f 1
...
f n

 , where f i ∈ Rti , ∀i ∈ [n].

The rows of ∂2 and the entries of γ are:

∂2 =



B1
...

Bd

M 1

. . .

M n


, γ =



b(1)13
...

b(d)13

0m1

...
0mn


, (4.2)

78 4. Hardness Results for Combinatorial Laplacians

Here, each submatrix B q ∈ {0,±1}3×t corresponds to the three boundary edges
{α1

q , α
2
q , α

3
q}; each submatrix M i ∈ {0,±1}mi×ti corresponds to all the interior edges

in Ki. Interior edges in Ki and those in Kj do not share endpoints if i ̸= j. Let
M = diag(M 1,M 2, . . . ,M n).

Claim 4.5.3. For each i ∈ [n], f i = α1ti for some α ∈ R.

Proof. For each i ∈ [n], we have M if i = 0. This means that for any two triangles ∆,∆′

in Ki sharing an interior edge, we have f i(∆) = f i(∆
′). By our construction of Ki, for

any two triangles ∆,∆′ in Ki, there exists a triangle path connecting ∆ and ∆′. The
values of f i at the triangles in this triangle path are equal; in particular, f i(∆) = f i(∆

′).
Thus, the values of f i at all the triangles in Ki are equal, that is, f i = α1ti for some
α ∈ R.

Lemma 4.5.4 (Exact Solvers in Feasible Case). Given a difference-average instance
le (A, b) where b ∈ Im(A), let (∂2, γ,∆

c) be returned by ReduceDAToB2(A, b), and
let f be a solution to le (∂2, γ). Then, x ←MapSolnB2toDA(A, b, f ,∆c) is a solution
to le (A, b).

Proof. By Claim 4.5.3, we can write f as

f =


α11t1

α21t2
...

αn1tn

 , where α1, . . . , αn ∈ R.

According to Algorithm MapSolnB2toDA(A, b, f ,∆c), for each i ∈ [n], x (i) = αi.
Our goal is to show Ax = b.

• For each difference equation in le (A, b), say x (i) − x (j) = b(q), we look at the
equations in le (∂2, γ) related to B q:

f i(∆
r
q,i)− f j(∆

r
q,j) = b(q), ∀r ∈ {1, 2, 3}.

Thus x (i)− x (j) = b(q) holds.

• For each average equation in le (A, b), say x (i) + x (j) − 2x (k) = b(q) = 0, we
look at the equations in le (∂2, γ) related to B q:

f i(∆
r
q,i) + f j(∆

r
q,j)− f k(∆

r
q,k,1)− f k(∆

r
q,k,2) = 0, ∀r ∈ {1, 2, 3}.

Thus x (i) + x (j)− 2x (k) = 0 holds.

4.5.5 Relation Between Approximate Solutions

Lemma 4.5.5 (Approximate Solvers in Feasible Case). Given a difference-average
instance lea (A, b, ϵDA) where b ∈ Im(A), let (∂2, γ,∆

c) be returned by
ReduceDAToB2(A, b). Suppose f is a solution to lea (∂2, γ, ϵ

B2) where

ϵB2 ≤ ϵDA

42 nnz(A)
,

and x is returned by MapSolnB2toDA(A, b, f ,∆c). Then, x is a solution to
lea (A, b, ϵDA).

4. Hardness Results for Combinatorial Laplacians 79

Proof. Since b ∈ Im(A), we have ∥∂2f − γ∥∞ ≤ ∥∂2f − γ∥2 ≤ ϵB2 ∥γ∥2.
We claim

∥Ax − b∥∞ ≤ 24 nnz(A)1/2 · ϵB2 ∥γ∥2 . (4.3)

Then,

∥Ax − b∥2 ≤ 24 nnz(A) · ϵB2 ∥γ∥2 .

By ReduceDAToB2(A, b), ∥γ∥2 ≤
√
3 ∥b∥2. Thus,

∥Ax − b∥2 ≤ 42 nnz(A)1/2 · ϵB2 ∥b∥2 ≤ ϵDA ∥b∥2 ,

that is, x is a solution to lea (A, b, ϵDA).

To prove Eq. (4.3), consider an arbitrary equation in lea (A, b, ϵDA), say
aix (i) + ajx (j) + akx (k) = b(q) where ai, aj, ak ∈ {−2,−1, 0, 1}. According to
MapSolnB2toDA(A, b, f ,∆c), for each l ∈ {i, j, k}, x (l) = f (∆l) where ∆l ∈ Kl

is the lth central triangle in ∆c. Then,

aix (i) + ajx (j) + akx (k) = aif (∆i) + ajf (∆j) + akf (∆k).

Note that the equation in lea (∂2, γ, ϵ
B2) related to the boundary edge α1

q , shared by
triangles ∆1

q,i,1,∆
1
q,j,1 and ∆1

q,k,1,∆
1
q,k,2 (if the equation is an average equation), satisfies

∣∣∣∣aif (∆1
q,i,1) + ajf (∆

1
q,j,1) +

1

2
ak
(
f (∆1

q,k,1) + f (∆1
q,k,2)

)
− b(q)

∣∣∣∣ ≤ ϵB2 ∥γ∥2 .

For each ∆ ∈ {∆1
q,i,1,∆

1
q,j,1,∆

1
q,k,1,∆

1
q,k,2}, we will replace f (∆) with its corresponding

central triangle ∆c. We can find a triangle path connecting ∆ and ∆c, say P = [∆(0) =
∆, . . . ,∆(lq) = ∆c], such that two adjacent triangles ∆(l),∆(l+1) share an interior edge
e(l). Then,

|f (∆)− f (∆c)| =

∣∣∣∣∣
lq∑
l=1

f (∆(l−1))− f (∆(l))

∣∣∣∣∣ ≤
lq∑
l=1

∣∣f (∆(l−1))− f (∆(l))
∣∣ = lq∑

l=1

∣∣[∂2f](e(l))∣∣
=

lq∑
l=1

∣∣[∂2f − γ](e(l))
∣∣ since γ(e(l)) = 0 for interior edges

=
∥∥[∂2f − γ](e(1) : e(lq))

∥∥
1

where the subvector corresponds to [e(1), . . . , e(lq)]

≤
√
ti
∥∥[∂2f − γ](e(1) : e(lq))

∥∥
2

since lq ≤ ti

≤
√
ti ∥∂2f − γ∥2

≤
√
ti · ϵB2 ∥γ∥2 .

80 4. Hardness Results for Combinatorial Laplacians

Thus,

|aix (i) + ajx (j) + akx (k)− b(q)|
= |aif (∆i) + ajf (∆j) + akf (∆k)− b(q)|

≤
∣∣∣∣aif (∆1

q,i,1) + ajf (∆
1
q,j,1) +

1

2
ak
(
f (∆1

q,k,1) + f (∆1
q,k,2)

)
− b(q)

∣∣∣∣︸ ︷︷ ︸
≤ϵB2∥γ∥2

+
∣∣f (∆1

q,i,1)− f (∆i)
∣∣︸ ︷︷ ︸

≤
√
tiϵB2∥γ∥2

+
∣∣f (∆1

q,j,1)− f (∆j)
∣∣︸ ︷︷ ︸

≤
√

tjϵB2∥γ∥2

+
∣∣f (∆1

q,k,1)− f (∆k)
∣∣︸ ︷︷ ︸

≤
√
tkϵ

B2∥γ∥2

+
∣∣f (∆1

q,k,2)− f (∆k)
∣∣︸ ︷︷ ︸

≤
√
tkϵ

B2∥γ∥2

≤ 5
√
t · ϵB2 ∥γ∥2

≤ 24 nnz(A)1/2 · ϵB2 ∥γ∥2 , by Lemma 4.5.2

That is, ∥Ax − b∥∞ ≤ 24 nnz(A)1/2 · ϵB2 ∥γ∥2.

4.5.6 Bounding the Condition Number of the New Matrix

In this section, we show that the condition number of ∂2 is upper bounded by a polynomial
of nnz(A), κ(A).

Lemma 4.5.6 (Condition Number of ∂2). Given a difference-average instance
lea(A, b, ϵDA) where b ∈ Im(A), let (∂2, γ,∆

c) be returned by ReduceDAToB2(A, b).
Then,

κ(∂2) ≤ 109 nnz(A)9/2κ(A)2.

Note that

κ2(∂2) = κ(∂⊤
2 ∂2) =

λmax(∂
⊤
2 ∂2)

λmin(∂⊤
2 ∂2)

.

We will upper bound λmax(∂
⊤
2 ∂2) and lower bound λmin(∂

⊤
2 ∂2). Our proof will heavily

rely on the Courant-Fischer theorem.

Theorem 4.5.7 (The Courant-Fischer Theorem). Let M be a symmetric matrix in Rn×n

where λmax, λmin are its maximum and minimum non-zero eigenvalue, respectively. Then

λmax = max
x ̸=0

x⊤Mx

x⊤x
, λmin = min

x⊥Ker(M),x ̸=0

x⊤Mx

x⊤x
.

The Maximum Eigenvalue

Lemma 4.5.8 (Maximum Eigenvalue). λmax(∂
⊤
2 ∂2) ≤ 12.

Proof. By the Courant-Fischer theorem,

λmax(∂
⊤
2 ∂2) = max

f :∥f ∥2=1
f ⊤∂⊤

2 ∂2f .

4. Hardness Results for Combinatorial Laplacians 81

Then for any f with ∥f ∥2 = 1,

f ⊤∂⊤
2 ∂2f =

m∑
i=1

(∑
∆:ei∈∆

∂2(ei,∆)f (∆)

)2

≤ 4
m∑
i=1

∑
∆:ei∈∆

f 2(∆) = 12 ∥f ∥22 = 12.

where the inequality is by the Cauchy-Schwarz inequality.

The Minimum Non-Zero Eigenvalue

We start with proving a relation between the null space of A and that of ∂2.

Lemma 4.5.9. Let

H =

1t1
...

1tn

 ∈ Rt×n.

Then, H is a bijection from Ker(A) to Ker(∂2).

Proof. Let x ∈ Ker(A). By our construction of ∂2, we have Hx ∈ Ker(∂2). For any
f ∈ Ker(∂2), by the proof of Lemma 4.5.4, f = Hx for some x ∈ Rn and Ax = 0.

Lemma 4.5.10 (Minimium Non-Zero Eigenvalue).

λmin(∂
⊤
2 ∂2) ≥

min{λmin(A
⊤A)2, 1}

1016d7
. (4.4)

Proof. By the Courant-Fischer theorem,

λmin(∂
⊤
2 ∂2) = min

f ∈Rt:f⊥Ker(∂2)
∥f ∥2=1

f ⊤∂⊤
2 ∂2f .

Let

C =
min{λmin(A

⊤A), 1}
106d2.5

.

We will exhaust all the vectors in {f : f ⊥ Ker(∂2), ∥f ∥2 = 1} by the following two cases.

Case 1. Suppose there exists i ∈ [n] such that Ki contains two triangles ∆,∆′ satisfying
|f (∆)− f (∆′)| ≥ C. Consider a triangle path in Ki connecting ∆ and ∆′, say [∆(0) =
∆,∆(1), . . . ,∆(l) = ∆′] where l ≤ 22d. There must exists i∗ ∈ [l] such that∣∣f (∆(i∗−1))− f (∆(i∗))

∣∣ ≥ C

l
.

Note that

f ⊤∂⊤
2 ∂2f ≥

(
f (∆(i∗−1))− f (∆(i∗))

)2 ≥ (C

l

)2

≥ min{λmin(A
⊤A)2, 1}

1016d7
.

82 4. Hardness Results for Combinatorial Laplacians

Case 2. Suppose for every i ∈ [n] and every two ∆,∆′ ∈ Ki, we have |f (∆)− f (∆′)| <
C. We write f as

f = f̃ + ϵ =


α11t1

α21t2
...

αn1tn

+ ϵ,

where αi is the value of f at the central triangle of Ki. Then,

∥ϵ∥2 <
√
tC ≤

√
22dC = o(1),∥∥∥f̃ ∥∥∥

2
= ∥f − ϵ∥2 ∈

(
1

2
, 2

)
.

We lower bound the quadratic value:

f ⊤∂⊤
2 ∂2f = f̃

⊤
∂⊤
2 ∂2f̃ + 2f̃

⊤
∂⊤
2 ∂2ϵ+ ϵ⊤∂⊤

2 ∂2ϵ

≥ f̃
⊤
∂⊤
2 ∂2f̃ − 2

∥∥∥∂⊤
2 ∂2f̃

∥∥∥
2
∥ϵ∥2

≥ f̃
⊤
∂⊤
2 ∂2f̃ − 4

∥∥∂⊤
2 ∂2
∥∥
2
∥ϵ∥2

≥ f̃
⊤
∂⊤
2 ∂2f̃ − 48

√
22dC, by Lemma 4.5.8

Note that

f̃
⊤
∂⊤
2 ∂2f̃ = 3 ∥Aα∥22 ,

where α = (α1, . . . , αn)
⊤. Write α = α⊥ +α0, where α⊥ is orthogonal to the null space

of A and α0 is in the null space of A. Then,

f̃
⊤
∂⊤
2 ∂2f̃ ≥ 3λmin(A

⊤A) ∥α⊥∥22 . (4.5)

It remains to lower bound ∥α⊥∥2. We can write f̃ = Hα⊥ + Hα0. By Lemma 4.5.9,

Hα0 ∈ Ker(∂2) and Hα⊥ ⊥ Ker(∂2). On the other hand, f̃ = f − ϵ and f ⊥ Ker(∂2).
We know

∥Hα⊥∥2 ≥ ∥f ∥2 − ∥ϵ∥2 ,

and thus

∥α⊥∥2 ≥
1√
t
∥Hα⊥∥2 ≥

1√
t
− C >

1√
22d

.

Together with Eq. (4.5),

f̃
⊤
∂⊤
2 ∂2f̃ ≥

3λmin(A
⊤A)

22d
.

This completes the proof.

Proof of Lemma 4.5.6. The proof follows by combining Lemma 4.5.8 and 4.5.10.

4. Hardness Results for Combinatorial Laplacians 83

4.6 Reducing DA to B2 in General Case

In this section, we show how to reduce lea (A, b, ϵDA) to instances lea over B2 without
requiring the assumption that b is in the image of A as we did in earlier sections. In
this more general case, lea (A, b, ϵDA) aims to compute an approximate solution to
argminx ∥Ax − b∥2 = argminx ∥Ax −ΠAb∥2.

We remark that our reduction for this general case does not work for le (A, b), which
computes an exact solution to minx ∥Ax − b∥2. Approximate linear equation solvers,
however, can be more interesting in practice, since numerical errors occur unavoidably
during data collection and computation, and approximate solutions may be computed
much faster than exact solutions.

4.6.1 Warm-Up: Reweighting Infeasible Equations to Preserve
Solutions

There is a crucial difference between the reductions we use for le (A, b) and
lea (A, b, ϵDA) when b ∈ Im(A) and in the general case when we may have b ̸∈ Im(A).

To understand this, consider the following feasible system of just two linear equations
in two variables x and y.

x− y = 1,

−x+ y = −1.

A feasible solution is x = 1 and y = 0. Now, suppose we add another linear equation that
is satisfied by all solutions to the previous equations, for example, we can simply repeat
the first constraint x− y = 1. It remains true that the existing solutions are feasible.

Now, in contrast, consider an infeasible system of two linear equations in variables x
and y.

x− y = 1,

−x+ y = 0.

This linear equation is not feasible. In particular, we can consider the associated mini-

mization problem argminx ∥Ax − b∥2 with A =

[
1 −1
−1 1

]
and b =

[
1
0

]
, for which one

minimizing solution is x =

[
1/2
0

]
. Notice that if we add a row which simply repeats the

first constraint, i.e. x− y = 1, then the resulting minimization problem has

A =

 1 −1
−1 1
1 −1

 and b =

10
1

 ,

and now x =

[
1/2
0

]
is no longer a minimizing solution to argminx ∥Ax − b∥2. In

particular, x =

[
1/2
0

]
achieves a value of

√
3/2, while x ′ =

[
2/3
0

]
achives the smaller

value
√
6/3.

84 4. Hardness Results for Combinatorial Laplacians

However, if we reweigh the first and last row of our system of inequalities by a factor
1/
√
2, so that

A =

1/√2 −1/√2−1 1

1/
√
2 −1/

√
2

 and b =

1/√20

1/
√
2

 ,

then we in fact maintain that the original solution x =

[
1/2
0

]
stays optimal. Thus, when

we modify an infeasible system of linear equations, we have to be very careful about
the weight we assign to different constraints if we are to (approximately) preserve the
correspondence between the optimal solutions of the original and the final problems. In
the following section, we describe a reweighting scheme which can be combined with our
existing reductions to ensure that optimal solutions are (approximately) preserved, even
when the original problem is infeasible.

4.6.2 Reduction Algorithm

Our reduction is almost the same as the algorithm ReduceDAToB2, except that we
assign edge weights for the constructed 2-complex.

Suppose we are given an instance lea (A, b, ϵDA) where A is a d× n matrix in DA.
Let (∂2, γ,∆

c) ← ReduceDAToB2(A, b). Let K be the 2-complex whose boundary
operator is ∂2. We compute the edge weights of K as follows.

1. For each boundary triangle ∆1
q,i,∗ where q ∈ [d], i ∈ [n] and ∗ ∈ {1, 2}, we find a

minimal triangle path P1
q,i,∗ in Ki from the central triangle ∆i to ∆1

q,i,∗. Let E1
q,i,∗

be the set of edges shared by neighboring triangles in P1
q,i,∗.

4

2. For each interior edge e and equation q, let kq,e be the number of triangle paths
indexed by equation q that contain e. For each equation q, let lq be the sum of the
lengths of all the triangle paths indexed by equation q. Then, we set the weight for
edge e to be

we =

{
1, if e is a boundary edge

α
∑

q∈[d] kq,elq, if e is an interior edge
, (4.6)

where

α =
2

(ϵDA)2
.

Let W be a diagonal matrix whose diagonals are the edge weights. We return
(W , ∂2, γ,∆

c).
Note that an edge in K may have weight 0. If we want to make all the edge weights

positive, we can impose polynomially small edge weights for these 0-weight edges, which
only affects the error propagation and condition number up to polynomial factors.

We refer to the above algorithm as ReduceRegDAToB2. We use the algorithm
MapSolnB2toDA to map a solution to lea (W 1/2∂2,W

1/2γ, ϵB2) back to a solution
to lea (A, b, ϵDA), where we choose

ϵB2 ≤ ϵDA√
3
(
1 + 1

α
∥b∥22 nnz(A) ∥A∥2max

) .
4Note that any two neighboring triangles in P1

q,i,∗ share exactly one edge. So, the length of P1
q,i,∗

equals
∣∣E1

q,i,∗
∣∣.

4. Hardness Results for Combinatorial Laplacians 85

Computing the Edge Weights in Linear Time. Since the weight of an interior
edge e only depends on Ki that contains edge e, we will compute the edge weights for the
edges in each Ki separately.

For each i ∈ [n], consider a graph Gi whose vertices are the triangles in Ki and the
two vertices are adjacent if and only if the two corresponding triangles share an edge
in Ki. We run the breadth-first-search (BFS) to construct a shortest-path tree Ti of Gi

rooted at ∆i. For each boundary triangle ∆1
q,i,∗, we choose the triangle path P1

q,i,∗ to
be the triangle path induced by Ti from the root ∆i to the node corresponding to ∆1

q,i,∗,
whose length is the height of the node ∆1

q,i,∗. Since we are only interested in these triangle
paths, for simplicity, we remove a node from Ti if it is not a boundary triangle ∆1

q,i,∗ for
some q and none of its descendant is a boundary triangle ∆1

q,i,∗ for some q. After this
operation, every leaf of Ti is a boundary triangle ∆1

q,i,∗ for some q.
Our goal is to count

∑
q∈[d] kq,elq for each edge in the tree Ti. We observe that an edge

e appears in a triangle path from the root ∆i to a boundary triangle ∆1
q,i,∗ if and only if

∆1
q,i,∗ is a descendant of an end-node of e with the higher height. First, we BFS traverse

the tree Ti to store the height of each boundary triangle node. Then, we traverse the tree
Ti to store lq at each boundary triangle node ∆1

q,i,∗ for each q ∈ [d]. Next, we traverse the
tree Ti from the leaf nodes to the root to count

∑
q∈[d] kq,elq for each edge e. The total

runtime is linear in the number of triangles in Kj.

4.6.3 Relation Between Exact Solutions

In this section, we show that by reweighting all the edges in K, an exact solution to
(W 1/2∂2,W

1/2γ) is close to an exact solution to (A, b), stated in Claim 4.6.1. Claim
4.6.1 plays a key role in analyzing approximate solutions and condition numbers.

Claim 4.6.1. For any f ∈ Rt and x ← MapSolnB2toDA(A, b, f ,∆c),

α

α + 1
∥Ax − b∥22 ≤

∥∥∥W 1/2∂2f −W 1/2γ
∥∥∥2
2
.

Note that if f satisfies ∂2f = γ, then ∥Ax − b∥22 = ∥∂2f − γ∥22. Claim 4.6.1 states
that by our choice of weights in W , we can generalize this relation to more general f .

Proof. For the convenience of analysis, we construct an auxiliary boundary matrix ∂̂2.
For each interior edge e, let ke be the number of all the triangle paths containing e, and
we split the row ∂2(e) into ke copies. For each copy related to equation q, we assign its
weight to be α · lq. Let Ŵ be the auxiliary weight matrix, and let γ̂ be the auxiliary
demand vector. We can check∥∥∥W 1/2∂2f −W 1/2γ

∥∥∥2
2
=
∥∥∥Ŵ 1/2

∂̂2f − Ŵ
1/2

γ̂
∥∥∥2
2
. (4.7)

We reorder rows of the matrices Ŵ , ∂̂2 and the vector γ̂ in the following way. For
each q ∈ [d], let Eq be a (multi)set that is the union of the shared edges in the triangle

paths indexed by q 5. Then, we reorder rows of Ŵ , ∂̂2, γ̂ by grouping those corresponding

5If the qth equation is a difference equation, then every edge appears in Eq at most once; if the qth
equation is an average equation, then some edges may appear twice.

86 4. Hardness Results for Combinatorial Laplacians

to the edges in Eq ∪ {α1
q}:

∂̂2 =


G1

...

Gd

 , where Gq =

B q

M q

 . (4.8)

where B q corresponds to the boundary edge α1
q and M q is the submatrix corresponding

to all the interior edges in Eq. Correspondingly, we write

Ŵ =


Ŵ 1

. . .

Ŵ d

 and γ̂ =


γ̂1
...

γ̂d

 , where γ̂q =

b(q)
0|Eq |

 . (4.9)

Let

ŵq,e
def
= Ŵ q(e, e) =

 1, if e is a boundary edge

α · lq, if e is an interior edge
.

For each q ∈ [d], we define

ϵq = A(q)x − b(q), ξq = B qf − b(q), δe = M q(e)f .

We can check

ϵq = 1⊤ (Gqf − γ̂q) = ξq +
∑
e∈Eq

δe.

By the Cauchy-Schwarz inequality,

ϵ2q =

ξq +
∑
e∈Eq

δe

2

≤

1 +
∑
e∈Eq

1

ŵq,e

ξ2q +
∑
e∈Eq

ŵq,eδ
2
e

 =

(
1 +

1

α

)ξ2q +
∑
e∈Eq

ŵq,eδ
2
e

 .

That is,

∥A(q)x − b(q)∥22 ≤
(
1 +

1

α

)∥∥∥Ŵ 1/2

q Gqf − Ŵ
1/2

q γ̂q

∥∥∥2
2
.

Summing over all d equations, we get

∥Ax − b∥22 ≤
(
1 +

1

α

)∥∥∥Ŵ 1/2
∂̂2f − Ŵ

1/2
γ̂
∥∥∥2
2
.

By Eq. (4.7), we get the inequality in the statement.

Claim 4.6.1 implies the following relation between the exact solutions to (A, b) and
those to (W 1/2∂2,W

1/2γ).

Lemma 4.6.2. Given any d×n matrix A ∈ DA and vector b ∈ Rd, let (W , ∂2, γ,∆
c)←

ReduceRegDAToB2(A, b, ϵDA). Then,

α

α + 1
min
x
∥Ax − b∥22 ≤ min

f

∥∥∥W 1/2∂2f −W 1/2γ
∥∥∥2
2
≤ min

x
∥Ax − b∥22 .

4. Hardness Results for Combinatorial Laplacians 87

Remark that Lemma 4.6.2 can also be stated as

α

α + 1
∥(I −ΠA)b∥22 ≤

∥∥∥(I −ΠW 1/2∂2
)W 1/2γ

∥∥∥2
2
≤ ∥(I −ΠA)b∥22 .

We do not prove equalities. But as α → ∞, the leftmost hand side and the rightmost
hand side are equal.

Proof. Let f ∗ ∈ argminf

∥∥∥W 1/2∂2f −W 1/2γ
∥∥∥
2
and x ∗ ∈ argminx ∥Ax − b∥2. Let x ←

MapSolnB2toDA(A, b,W 1/2∂2, f
∗). By Claim 4.6.1

α

α + 1
∥Ax ∗ − b∥22 ≤

α

α + 1
∥Ax − b∥22 ≤

∥∥∥W 1/2∂2f
∗ −W 1/2γ

∥∥∥2
2
,

which is the first inequality in the lemma statement. Let

f =

x
∗(1)1t1
...

x ∗(n)1tn

 .

Then, ∥∥∥W 1/2∂2f
∗ −W 1/2γ

∥∥∥2
2
≤
∥∥∥W 1/2∂2f −W 1/2γ

∥∥∥2
2
= ∥Ax ∗ − b∥22 ,

which is the second inequality in the lemma statement.

4.6.4 Relation Between Approximate Solutions

Linear equation problem le (A, b) aims to find a vector x such that Ax = ΠAb. In our
setting, both A and b have integer entries. We will need the following claim to lower
bound Ax = ΠAb.

Claim 4.6.3. Let A ∈ Rd×n and b ∈ Rd such that
∥∥A⊤b

∥∥
2
≥ 1. Then,

∥ΠAb∥22 ≥
1

λmax

(
A⊤A

) .
Proof. Note that

∥ΠAb∥22 = b⊤A(A⊤A)†A⊤b ≥ λmin((A
⊤A)†)

∥∥A⊤b
∥∥2
2
≥ 1

λmax

(
A⊤A

) .

Claim 4.6.3 and Lemma 4.6.2 enable us to relate ∥ΠAb∥2 with
∥∥∥ΠW 1/2∂2

W 1/2γ
∥∥∥
2
.

Claim 4.6.4. ∥∥∥ΠW 1/2∂2
W 1/2γ

∥∥∥2
2
≤
(
1 +

1

α
λmax(A

⊤A) ∥b∥22
)
∥ΠAb∥22 .

88 4. Hardness Results for Combinatorial Laplacians

Proof. We apply Lemma 4.6.2.

∥ΠAb∥22 = ∥b∥
2
2 − ∥(I −ΠA)b∥22

≥
∥∥∥W 1/2γ

∥∥∥2
2
− α + 1

α

∥∥∥(I −ΠW 1/2∂2
)W 1/2γ

∥∥∥2
2

=
∥∥∥ΠW 1/2∂2

W 1/2γ
∥∥∥2
2
− 1

α

∥∥∥(I −ΠW 1/2∂2
)W 1/2γ

∥∥∥2
2

≥
∥∥∥ΠW 1/2∂2

W 1/2γ
∥∥∥2
2
− 1

α
∥(I −ΠA)b∥22 .

Since A, b have integer entries, by Claim 4.6.3,

∥(I −ΠA)b∥22 ≤ ∥b∥
2
2 ≤ ∥b∥

2
2 · λmax(A

⊤A) ∥ΠAb∥22 .
Thus, ∥∥∥ΠW 1/2∂2

W 1/2γ
∥∥∥2
2
≤
(
1 +

1

α
λmax(A

⊤A) ∥b∥22
)
∥ΠAb∥22 .

Now, we apply Claim 4.6.1 and Lemma 4.6.4 to prove a relation between approximate
solutions.

Lemma 4.6.5 (Approximate Solvers in General Case). Given a difference-average in-
stance lea (A, b, ϵDA), let (W , ∂2, γ,∆

c) ← ReduceRegDAToB2(A, b, α). Sup-

pose f is a solution to lea (W 1/2∂2,W
1/2γ, ϵB2), where ϵB2 ≤ ϵDA

10
. Let x ←

MapSolnB2toDA(A, b, f ,∆c). Then, x is a solution to lea (A, b, ϵDA).

Proof. By Claim 4.6.1, we have

∥Ax − b∥22 ≤
α + 1

α

∥∥∥W 1/2∂2f −W 1/2γ
∥∥∥2
2
. (4.10)

Also note that

∥Ax − b∥22 = ∥Ax −ΠAb∥22 + ∥(I −ΠA)b∥22 ,∥∥∥W 1/2∂2f −W 1/2γ
∥∥∥2
2
=
∥∥∥W 1/2∂2f −ΠW 1/2∂2

W 1/2γ
∥∥∥2
2
+
∥∥∥(I −ΠW 1/2∂2

)W 1/2γ
∥∥∥2
2
.

Plugging these into Eq. (4.10) and apply Lemma 4.6.2,

∥Ax −ΠAb∥22 ≤
α + 1

α

(∥∥∥W 1/2∂2f −ΠW 1/2∂2
W 1/2γ

∥∥∥2
2
+
∥∥∥(I −ΠW 1/2∂2

)W 1/2γ
∥∥∥2
2

)
− ∥(I −ΠA)b∥22

≤ α + 1

α

∥∥∥W 1/2∂2f −ΠW 1/2∂2
W 1/2γ

∥∥∥2
2
+

1

α
∥(I −ΠA)b∥22 .

By the fact that f is a solution to lea (W 1/2∂2,W
1/2γ, ϵB2) and by Claim 4.6.4,∥∥∥W 1/2∂2f −ΠW 1/2∂2

W 1/2γ
∥∥∥2
2
≤
(
ϵB2
)2 ∥∥∥ΠW 1/2∂2

W 1/2γ
∥∥∥2
2
≤
(
ϵDA
)2

3
∥ΠAb∥22 .

In addition,

1

α
∥(I −ΠA)b∥22 ≤

1

α
∥b∥22 ≤

(
ϵDA
)2

2
∥ΠAb∥22 .

Thus,

∥Ax −ΠAb∥22 ≤
(
ϵDA
)2 ∥ΠAb∥22 ,

that is, x is a solution to lea (A, b, ϵDA).

4. Hardness Results for Combinatorial Laplacians 89

4.6.5 Bounding the Condition Number of the New Matrix

We will upper bound the maximum eigenvalue of ∂⊤
2 W ∂2 and lower bound its minimum

non-zero eigenvalue. The proofs are similar to those in Section 4.5.6, which bound the
eigenvalues of ∂⊤

2 ∂2.

Lemma 4.6.6. κ(∂⊤
2 W ∂2) = O

(
(ϵDA)−2 nnz(A)15/2κ(A⊤A)

)
.

Proof. The proof follows the same proof line in Section 4.5.6 for W = I . Here, we lose
a factor wmax when we upper bound λmax(∂

⊤
2 W ∂2), and we lose a factor wmax

wmin
when we

lower bound λmax(∂
⊤
2 W ∂2), where wmax is the maximum diagonal in W and wmin is the

minimum non-zero diagonal in W . By our setting, wmax = O(α nnz(A)2) and wmin = α,
where α = 2(ϵDA)−2.

90 4. Hardness Results for Combinatorial Laplacians

Chapter 5

Hardness Results for More
Structured Problems

This chapter extends the reduction from Chapter 4 to derive additional hardness results.
We begin by presenting the reduction algorithm from general linear equations to

difference-average equations for completeness, and prove Theorem 1.4.3: lea over DA
is sparse-linear-equation complete. Next, using matrices in DA as our starting point,
we introduce an even simpler form called One-Or-Three matrices, in which each row has
either one or three non-zero entries (all of which are ±1). We denote this matrix class by
OT . Building on this simplification, we extend the reduction of linear equations to the
reduction of linear programs, leading to what we call 1-or-3 linear programs. We believe
these programs serve as a strong foundation for further reductions to more structured LP
problems. We remark that this result is unpublished.

For simplicity, throughout this chapter we focus on the reduction algorithms. Analyses
such as error propagation and condition number are omitted.

5.1 Reducing General LE to Difference-Average LE

In this section, we prove Theorem 4.3.4: lea over DA is sparse-linear-equation complete.
We show a nearly-linear time reduction from linear equation problems over matrices in

G to linear equation problems over matrices in DA. This reduction is implicit in Section
4 of [KZ17], as an intermediate step to reduce linear equation problems over matrices in G
to matrices in a slight generalization of Laplacians. We explicitly separate the reduction
step and simplify the proofs in [KZ17], which might be of independent interest.

Recall that a matrix in G has polynomially bounded integer entries and polynomially
bounded condition numbers, and they do not have all-0 rows or all-0 columns; a matrix
A ∈ DA only has two types of rows such that if we multiply A to a vector x , then the
entries of Ax are in the form of either x (i)− x (j) or x (i) + x (j)− 2x (k).

The reduction in [KZ17] has three steps:

1. Reduce linear equation problems over matrices in G to matrices in Gz, a subset of
G containing matrices with row sum 0. Given an instance (G, b) where G ∈ G, we
construct a new instance (G ′, b) where G ′ =

[
G −G1

]
∈ Gz.

2. Reduce linear equation problems over matrices in Gz to matrices in Gz,2, a subset
of Gz containing matrices such that the sum of positive entries in each row is a

91

92 5. Hardness Results for More Structured Problems

power of 2. Given an instance (G ′, b) where G ′ ∈ Gz, we construct a new instance

(G ′′, b ′′) where G ′′ =

[
G ′ g −g
0 1 −1

]
∈ Gz,2 and b ′′ =

[
b
0

]
.

3. Reduce linear equation problems over matrices in Gz,2 to matrices in DA.

The first two steps are proved in Section 7 of [KZ17], by standard tricks. We will
focus on the third step.

In the rest of this section, to be consistent with the notations used in [KZ17], we use
subscripts to denote entries of a matrix or a vector. Let Ai denote the ith row of a matrix
A, and Aij denote the (i, j)th entry of A. Let x i denote the ith entry of a vector x ,
and x i:j denote the subvector of entries x i,x i+1, . . . ,x j. Moreover, we let ∥A∥max be the
maximum magnitude of the entries of A.

Given an instance of linear equation problems over Gz,2, our construction of an in-
stance over DA does not depend on the error parameter. Therefore, we will describe
our construction without the error parameters; then we will explain how to set the error
parameter for the construction instance over DA.

Let (A, cA) be an instance over Gz,2. The idea is to write each equation in (A, cA) as
a set of difference equations and average equations, via bitwise decomposition. Same as
[KZ17], we first explain the idea by an example:

3x 1 + 5x 2 − x 3 − 7x 4 = 1. (5.1)

We will manipulate the variables with positive coefficients and the variables with negative
coefficients separately. Let us take the positive coefficients as an example. We pair all
the variables with the odd positive coefficients and replace each pair with a new variable
via an average equation. In this example, we pair x 1,x 2; we then create a new variable
x 12 and a new average equation

x 1 + x 2 − 2x 12 = 0.

Plugging this into Eq. (5.1), we get

2x 1 + 4x 2 + 2x 12 − x 3 − 7x 4 = 1.

We pull out a factor 2:

2(x 1 + 2x 2 + x 12)− x 3 − 7x 4 = 1.

We repeat the pair-and-replace process to pair x 1,x 12 with a new variables x 1,12 and a
new average equation x 1 + x 12 − 2x 1,12 = 0:

2(2x 1,12 + 2x 2)− x 3 − 7x 4 = 1.

Pull out a factor 2:

4(x 1,12 + x 2)− x 3 − 7x 4 = 1.

Repeat pair-and-replace with x 1,12 + x 2 − 2x 1,12,2 = 0:

8x 1,12,2 − x 3 − 7x 4 = 1.

5. Hardness Results for More Structured Problems 93

Similarly, we can use a sequence of average equations for the variables with odd coeffi-
cients, and the above equation becomes:

8x 1,12,2 − 8x 34 = 1.

where x 34 is a new variable. The final equation is a difference equation.
The above reduction relies on the fact that the sum of all the coefficients is 0 and the

sum of all the positive coefficients is a power of 2.
Pseudo-code of the reduction from linear equation problems over Gz,2 to DA is shown

in Algorithm 1.

Lemma 5.1.1. Let A ∈ Gz,2, and let B be returned by running Algorithm
Reduce Gz,2toDA on A. Then,

• nnz(B) = O(nnz(A) log ∥A∥max);

• both the dimensions of B are O(nnz(A) log ∥A∥max).

Proof. The second statement is implied by the first one.
To prove the first statement, we focus on Algorithm Reduce Gz,2toDA for a sin-

gle equation in Ai. The number of the while-iterations from line 16 to 27 is at most
log ∥A∥max. We observe that (1) in each iteration, the number of newly created variables
and equations is at most the value of nnz(Ai) at the beginning of the iteration; (2) once
an auxiliary variable is added to Ai, it must be replaced with a new auxiliary variable in
the next iteration (if exists). Therefore, nnz(Ai) = O(nnz(Ai)) for every iteration. So,
nnz(B) = O(nnz(A) log ∥A∥max).

Knowing that the first two steps of reduction only increase the problem size by a
constant factor, we obtain the following result directly.

Corollary 5.1.2. Let A ∈ G and we reduce a polynomially bounded general le (A, b)
to a difference-average le (B , c), where B ∈ DA. Then,

nnz(B) = O(nnz(A) log ∥A∥max).

5.2 Reducing Difference-Average LE to 1-or-3 LE

Recall that a matrix in DA only has two types of rows such that for any qth equation in
Ax = b, it takes one of the following forms:

1. Average equation: x (q1) + x (q2) = 2x (q3);

2. Difference equation: x (q1)− x (q2) = bq.

In this section, we present a reduction algorithm to reduce DA to OT , a class of
matrices with a further simplified structure. Specifically, a matrix A ∈ OT only has two
types of rows such that for any qth equation in Ax = b, it has one of the following forms:

1Note that given two singleton multi-sets each containing a single equation, e.g.
{
aaa⊤
1 x = c1

}
and{

aaa⊤
2 x = c2

}
where aaa1,aaa2 are vectors, we define

{
aaa⊤
1 x = c1

}
+
{
aaa⊤
2 x = c2

}
=
{
aaa⊤
1 x + aaa⊤

2 x = c1 + c2
}

and we define
{
aaa⊤
1 x = c1

}
∪
{
aaa⊤
2 x = c2

}
=
{
aaa⊤
1 x = c1,aaa

⊤
2 x = c2

}
.

94 5. Hardness Results for More Structured Problems

Algorithm 1: Reduce Gz,2toDA
Input: (A, cA) where A ∈ Gz,2 is an m× n matrix, cA ∈ Rn, and α > 0.
Output: (B , cB) where B ∈ DA is an m× n matrix, and cB ∈ Rn.

1 X ← {u1, . . . ,un} ; // DA variables and index of new variables

2 Let x be the vector of variables corresponding to the set of variables X
3 t← n+ 1
4 A ← ∅, B ← ∅ ; // Multisets of main and DA auxiliary equations

respectively

5 for each equation 1 ≤ i ≤ m in A do
6 if Ai is already a difference equation or an average equation then
7 A ← A∪ {Aij+u j+ −Aij+u j− = ci}
8 wi ← α

α+1

9 end
10 else
11 Let I+1 ← {j : Aij > 0}, I−1 ← {j : Aij < 0}
12 Ai ← {Aiu = ci}
13 Bi ← ∅
14 for s = −1,+1 do
15 r ← 0
16 while Ai is neither a difference equation nor an average equation do

17 For each j, let Âij be the coefficient of u j in Ai.

18 Isodd ← {j ∈ Is : ⌊|Âij|/2r⌋ is odd}
19 Pair the indices of Isodd into disjoint pairs (j1, l1), (j2, l2), . . .
20 for each pair of indices (jk, lk) do
21 Ai ← Ai + s · 2r {(2u t − (u jk + u lk)) = 0} 1

22 Bi ← Bi ∪ s · 2r {(2u t − (u jk + u lk)) = 0}
23 X ← X ∪ {u t}, update x accordingly
24 t← t+ 1
25 r ← r + 1

26 end

27 end

28 end
29 wi ← α |Bi|
30 B ← B ∪ w

1/2
i · Bi

31 A ← A∪Ai.

32 end

33 end
34 return B , c s.t. Bx = c corresponds to the equations in A ∪ B, on the variable

set X .

1. Three-variable equation: x (q1) + x (q2) = x (q3);

2. Fixed-value equation: x (q) = 1.

We independently reduce each average or difference equation into the OT form. The
reduction process is presented step by step.

5. Hardness Results for More Structured Problems 95

5.2.1 Reducing Average Equations

For each average equation x (q1) + x (q2) = 2x (q3), we first introduce auxiliary variables
savg and replace it with a constant number of equations:

x (q1) + x (q2) = savg(q1),

x (q3) + savg(q2) = savg(q1),

x (q3) + savg(q3) = savg(q2),

savg(q3) = 0.

(Average reduction)

Compared to the OT form, it remains to reduce the last equation savg(q3) = 0 because
its right-hand-side (RHS) is not 1. For this, we reduce it to

savg(q3) + savg(q4) = savg(q5),

savg(q4) = 1,

savg(q5) = 1.

(RHS reduction from 0 to 1)

Now, the reduced equations are in the form of OT . And we can check that this
reduction preserves equivalence with the original average equation.

5.2.2 Reducing Difference Equations

For each difference equation x (q1)− x (q2) = bq, the major challenge lies in the reduction
of the RHS bq to 1. Without loss of generality, we can assume bq ≥ 0 because we can
switch x (q1),x (q2) otherwise. Moreover, we assume that entries of b are integers and
can be represented with polylogarithmic bits.

We present the reduction in several steps.

1. First, we reduce the difference equation to the following two equations:

x (q1) + sdiff(q) = x (q2),

sdiff(q) = bq.

2. We then conduct bitwise decomposition of bq:

bq =
K∑
i=0

r(i)q 2i, where r(i)q ∈ {0, 1} and K = log bq.

Using more auxiliary variables, we break down sdiff(q) = bq into K equations:

sdiff(q0) = r(0)q ∈ {0, 1},
sdiff(qi) = sdiff(qi−1) + y q(i), ∀i ∈ {1, . . . , K},
y q(i) = r(i)q 2i, ∀i ∈ {1, . . . , K}.

3. In this step, we reduce y q(i) = r
(i)
q 2i. If r

(i)
q = 0, then we skip. In the case of

r
(i)
q = 1, we reduce it to a series of i equations:

y q(i0) = 1,

y q(ij) = 2y q(ij−1), ∀j ∈ {1, . . . , i}.

96 5. Hardness Results for More Structured Problems

4. For each equation y q(ij) = 2y q(ij−1), we reduce it to

y q(ij−1,1) + y q(ij−1,2) = y q(ij),

y q(ij−1,1)− y q(ij−1,2) = 0.

Notice that the second equation is a difference equation with RHS being 0, applying
the reduction in step 1 gives

y q(ij−1,1) + y q(ij−1,3) = y q(ij−1,2),

y q(ij−1,3) = 0.

5. Finally, for all equation with only one variable and 0 RHS, we apply the reduction
in (RHS reduction from 0 to 1).

Now, all the equations are reduced to the two types of equations in OT : {x (q1) +
x (q2) = x (q3),x (q) = 1}.

Lemma 5.2.1. Let A ∈ DA and we reduce a difference-average le (A, b) to a 1-or-3
le (B , c), where B ∈ OT by applying the above reduction algorithm. Then,

nnz(B) = O(nnz(A) log2 ∥b∥max).

Proof. We first have that each average equation is reduced to a constant number of
equations. For each difference equation with RHS bq, step 1, 4, and 5 only increase
the number of equations by a constant factor, while step 2 and 3 increase the reduced
number of equations by a factor of O(log bq), respectively. Thus, each difference equation
is reduced to O(log2 bq) equations.

To conclude, nnz(B) = O(nnz(A) log2 ∥b∥max).

The following corollary is obtained by combining Corollary 5.1.2 and Lemma 5.2.1.

Corollary 5.2.2. Let A ∈ G and we reduce a polynomially bounded general le (A, b)
to a 1-or-3 le (B , c), where B ∈ OT and entries of c are in {0, 1}. Then,

nnz(B) = O(nnz(A) log ∥A∥max log
2 ∥b∥max).

5.3 Reducing General LP to (Simplified) 1-or-3 LP

In this section, we present a reduction algorithm from general linear programs to (sim-
plified) 1-or-3 linear programs.

We start with an arbitrary polynomially-bounded LP

{Ax = b, x ≥ 0}, (General LP)

where entries of A, b are polynomially bounded integers and ∥x∥1 is also polynomially
bounded. Our goal is to reduce it to 1-or-3 LP, which is in the form of

{Ax = b, 0 ≤ x ≤ 1}, where A ∈ OT . (1-or-3 LP)

Compared to the reduction algorithms for general LE described in Section 5.1 and 5.2,
reducing general linear programs (LPs) requires extra caution to preserve non-negativity

5. Hardness Results for More Structured Problems 97

constraints. Moreover, to reduce to 1-or-3 LP, we have to reduce and maintain the scale
of x to be in the range of [0, 1].

Interestingly, the upper bound of variables x ≤ 1 in a 1-or-3 LP can be relaxed,
leading to a further simplified problem:

{Ax = 1, x ≥ 0}, (Simplified 1-or-3 LP)

The reduction algorithm for transforming a 1-or-3 LP into its simplified version is de-
tailed in Section 5.3.4. The reduction algorithm from (General LP) to (1-or-3 LP) is
presented in Section 5.3.1, 5.3.2 and 5.3.3, following a chain of reductions through several
intermediate problems:

General LP → Scaled LP → Difference-Average LP → 1-or-3 LP,

where a scaled LP takes the form

{Ax = b,x ≥ 0, ∥x∥max ≤ c}, where c ≤ 1

2
is a constant, (Scaled LP)

and a difference-average LP is defined as

{Ax = b,x ≥ 0, ∥x∥max ≤
1

2
}, where A ∈ DA. (Difference-Average LP)

5.3.1 Reducing General LP to Scaled LP

Since (General LP) is polynomially bounded, let

B = ∥x∥max ≤ ∥x∥1 = poly(n).

And set k and C be integers such that

k = ⌈log2 ∥b∥max⌉, C = 2max{k, 1+⌈log2 B⌉}.

Then we set

Ã =
CA

2k
, b̃ =

b

2k
, x̃ =

x

C
,

and obtain a scaled LP {
Ãx̃ = b̃, x̃ ≥ 0, ∥x̃∥max ≤

B

C

}
, (5.2)

where we can notice that

• Ã = CA
2k

is a matrix with integer entries since C
2k

is an integer;

•
∥∥∥b̃∥∥∥

max
≤ 1;

• ∥x̃∥max ≤
B
C
≤ 1

2
.

98 5. Hardness Results for More Structured Problems

5.3.2 Reducing Scaled LP to Difference-Average LP

We apply the reduction algorithm described in Section 5.1. Recall the three steps to
reduce a general LE to DA, and we closely keep track of the non-negativity and the
infinity norm of variables.

1. To reduce Ã to a matrix with row sum 0, we set

Ã
′
=
[
Ã −Ã1

]
, b̃

′
= b̃, x̃ ′ =

[
x̃

xaux
1

]
,

and we add an additional equality constraint

xaux
1 = 0.

Then we can check that x̃ ′ ≥ 0 and ∥x̃ ′∥max ≤ 1/2.

2. To reduce Ã
′
to a matrix such that the sum of positive entries in each row is a

power of 2, we set

Ã
′′
=

[
Ã

′
g −g

0 1 −1

]
, b̃

′′
=

[
b̃
′

0

]
, x̃ ′′ =

 x̃ ′

xaux
2

xaux
3

 ,

and we add additional equality constraints

xaux
2 = 0, xaux

3 = 0.

Again, we can check that x̃ ′′ ≥ 0 and ∥x̃ ′′∥max ≤ 1/2.

3. To reduce Ã
′′
to a difference-average matrix, notice that each time we introduce a

new variable, its value is the average of two old variables. Hence, new variables are
also non-negative, and the infinity norm of the auxiliary variables will not exceed
that of the original variables. The resulting problem is a difference-average LP,
denoted as {

Āx̄ = b̄, x̄ ≥ 0, ∥x̄∥max ≤
1

2

}
, where Ā ∈ DA. (5.3)

In particular, b̄ =

[
b̃
′′

0

]
, thus

∥∥b̄∥∥
max
≤ 1.

5.3.3 Reducing Difference-Average LP to 1-or-3 LP

In this step, we extend the reduction algorithm from DA to OT , as described in Section
5.2. To reduce average equations as shown in (Average reduction), we have

savg ≥ 0, ∥savg∥max ≤ 2 ∥x̄∥max ≤ 1.

The reduction for difference equations needs to be slightly adjusted. The reason is
that in Section 5.2, we assume that entries of the RHS vector are polynomially bounded

5. Hardness Results for More Structured Problems 99

integers, while here we have the RHS
∥∥b̄∥∥

max
≤ 1. Therefore, for each difference equation

x̄ (q1)− x̄ (q2) = b̄q, conducting bitwise decomposition of b̄q gives

b̄q =
k∑

i=0

r(i)q 2−i, where r(i)q ∈ {0, 1} and k = ⌈log ∥b∥max⌉.

And to reduce y q(i) = r
(i)
q 2−i in the case of r

(i)
q = 1 and for i ∈ {1, . . . , k}, we reduce it

to the following series of i equations:

y q(i0) = 1,

y q(ij) = y q(ij−1)/2, ∀j ∈ {1, . . . , i}.

And for each equations y q(ij) = y q(ij−1)/2, we reduce it to

y q(ij−1,1) + y q(ij−1,2) = 2y q(ij),

y q(ij−1,2) = 0.

Notice that the first equation is an average equation, which can be further reduced by
applying (Average reduction). As the last step, we reduce one-variable equations with
0 right-hand side by applying (RHS reduction from 0 to 1). Again, we have the newly
introduced variables to satisfy

sdiff,y ≥ 0 and
∥∥sdiff

∥∥
max

, ∥y∥max ≤ 1.

Putting it altogether, we reduce the difference-average LP (5.3) to a 1-or-3 LP in the
form of (1-or-3 LP).

Lemma 5.3.1. Let A ∈ G be the coefficient matrix in (General LP) and let B ∈ OT be
the coefficient matrix in (1-or-3 LP). Then,

nnz(B) = O
(
nnz(A) log ∥A∥max log

2 ∥b∥max

)
.

Proof. It follows directly from Corollary 5.2.2.

5.3.4 Reducing 1-or-3 LP to Simplified 1-or-3 LP

Actually, (1-or-3 LP) can be further simplified by dropping the upper bound of variables
x ≤ 1, and achieving the following form:

{Ax = 1, x ≥ 0},

where equality constraints have one of the following forms:

1. x (q1) + x (q2) + x (q3) = 1;

2. x (q) = 1.

100 5. Hardness Results for More Structured Problems

For this, because of x ≤ 1, we can replace each equation in the form of x (q1)+x (q2) =
x (q3) with the following equations:

x (q1) + x (q2) + s(q1) = 1,

x (q3) + s(q1) + s(q2) = 1,

s(q1) ≥ 0,

s(q2) = 0.

(Dropping upper bound)

And the equation s(q2) = 0 can be further reduced to

s(q2) + s(q3) + s(q4) = 1,

s(q3) = 1,

s(q4) ≥ 0.

(Another RHS reduction from 0 to 1)

The simplified 1-or-3 LP has a much more direct and intuitive structure, making it
easier to relate to 3-SAT. Like 3-SAT, it serves as a promising starting point for proving
the hardness of other problems, and for ultimately establishing a sparse-linear-program
complete problem class, similar to the NP-complete problem class. This perspective
aligns with the findings of [PW17], which also reduced general LPs to the simplified
1-or-3 LP but used a different reduction algorithm. Moreover, [PW17] extended this
work by reducing the simplified 1-or-3 LP to LP relaxations of several combinatorial
optimization problems, such as Set Cover, Set Packing, Maximum Satisfiability, and
Maximum Independent Set. These results concluded that the LP relaxations of these
combinatorial problems are sparse-linear-program complete.

Chapter 6

1-Laplacian Solver for Well-Shaped
Simplicial Complexes

This chapter is based on [DZ23b]. We will prove Theorem 1.4.6 and 1.4.7. In the published
version of [DZ23b], we further developed additional technical components that are not
included in this thesis but may be of independent interest (e.g., sufficient conditions for
3-complexes that enable efficient r-hollowing computation; a nearly-linear time hollowing
algorithm; a faster solver for up-Laplacian).

6.1 Prior Works

Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [Coh+14a] initiated the study of
fast approximate solvers for 1-Laplacian linear equations. They designed a nearly-linear
time approximate solver for simplicial complexes with zero Betti numbers and known
collapsing sequences. Later, Black, Maxwell, Nayyeri, and Winkelman [Bla+22], and
Black and Nayyeri [BN22] generalized this algorithm to subcomplexes of such a complex
with bounded first Betti numbers. One concrete example studied in these papers is convex
simplicial complexes that piecewise linearly triangulate a convex ball in R3, for which a
collapsing sequence exists and can be computed in linear time [Chi67; Chi80]. However,
deciding whether a simplicial complex has a collapsing sequence is NP-hard in general
[Tan16]; computing the Betti numbers is as hard as computing the ranks of general
{0, 1} matrices [EP14]. In addition, 1-Laplacian systems for general simplicial complexes
embedded in R4 are as hard to solve as general sparse linear equations [Din+22], for
which the best-known algorithms need super-quadratic time [PV21; Nie22].

In addition to the specialized solvers for 1-Laplacian systems mentioned above, Nested
Dissection can solve 1-Laplacian systems in quadratic time for simplicial complexes in
R3 with additional geometric structures [Geo73; LRT79; MT90] such as bounded aspect
ratios of individual tetrahedra. Furthermore, iterative methods such as Preconditioned
Conjugate Gradient approximately solve 1-Laplacian systems in time Õ(n

√
κ),1 where n

is the number of simplexes and κ is the condition number of the coefficient matrix.

Inspired by solvers that leverage both geometric structures and spectral properties,
we develop efficient 1-Laplacian approximate solvers for well-shaped simplicial com-
plexes embedded in R3 without known collapsing sequences and with arbitrary Betti num-

1We use Õ(·) to hide polylog factors on the number of simplexes, the condition number, and the
inverse of the error parameter.

101

102 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

bers. Our solver adapts the Incomplete Nested Dissection algorithm, proposed by Kyng,
Peng, Schwieterman, and Zhang [Kyn+18] for solving linear equations in well-shaped 3-
dimensional truss stiffness matrices. These matrices represent another generalization of
graph Laplacians; however, they differ quite from the 1-Laplacians studied in this paper.
A primary distinction is that the kernel of a truss stiffness matrix has an explicit and
well-understood form, while computing a 1-Laplacian’s kernel is as hard as that for a
general matrix.

6.2 Motivations and Applications

In the past decades, combinatorial Laplacians have played a crucial role in the devel-
opment of computational topology and topological data analysis in various domains,
such as statistics [Jia+11; ODO13], graphics and imaging [Ma+11b; Ton+03b], brain
networks [Lee+19], deep learning [Bro+17], signal processing [BS20], and cryo-electron
microscope [YL17b]. We recommend readers consult accessible surveys [Ghr08b; Car09;
EH10; Lim20] for more information.

Combinatorial Laplacians have their roots in the study of discrete Hodge decompo-
sition [Eck44], which states that the kernel of the i-Laplacian Li is isomorphic to the
ith homology group of the simplicial complex. Among the many applications of combi-
natorial Laplacians, a central problem is determining the Betti numbers – the ranks of
the homology groups – which are important topological invariants. Additionally, discrete
Hodge decomposition allows for the extraction of meaningful information from data by
decomposing them into three mutually orthogonal components: gradient (in the image
of ∂⊤

i), curl (in the image of ∂i+1), and harmonic (in the kernel of Li) components. For
instance, the three components of edge flows in a graph capture the global trends, local
circulations, and “noise”.

The computation of both Betti numbers and discrete Hodge decomposition of higher-
order flows can be achieved by solving systems of linear equations in combinatorial Lapla-
cians [Fri96; Lim20]. The rank of a matrix Li can be determined by solving a logarithmic
number of linear equation systems in Li [BV21]. The discrete Hodge decomposition can
be calculated by solving least square problems involving boundary operators or combi-
natorial Laplacians, which in turn reduces to solving linear equations in these matrices.

Furthermore, an important question in numerical linear algebra concerns whether
the nearly-linear time solvers for graph Laplacian linear equations can be generalized
to larger classes of linear equations. Researchers have achieved success with elliptic
finite element systems [BHV08b], connection Laplacians [Kyn+16], directed Laplacians
[Coh+17a; Coh+18], well-shaped truss stiffness matrices [DS07; ST08; Kyn+18]. It would
be intriguing to determine what structures of linear equations facilitate faster solvers.
Another theoretically compelling reason for developing efficient solvers for 1-Laplacians
stems from the “equivalence” of time complexity between solving 1-Laplacian systems
and general sparse systems of linear equations [Din+22]. If one can solve all 1-Laplacian

systems in time Õ((number of simplexes)c) where c ≥ 1 is a constant, then one can solve

all general systems of linear equations in time Õ((number of non-zeros)c).

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 103

6.3 Notations and Preliminaries

Aspect Ratio. The aspect ratio of a set S ⊂ R3 is the radius of the smallest ball
containing S divided by the radius of the largest ball contained in S. The aspect ratio of
S is always greater than or equal to 1. We say a simplex σ is stable if it has O(1) aspect
ratio and Θ(1) weight. Miller and Thurston proved the following lemma. As a corollary,
the numbers of the vertices, the edges, the triangles, and the tetrahedra of a 3-complex
K that is composed of stable tetrahedra are all equal up to a constant factor.

Lemma 6.3.1 (Lemma 4.1 of [MT90]). Let K be a 3-complex in R3 in which each tetra-
hedron has O(1) aspect ratio. Then, each vertex of K is contained in at most O(1)
tetrahedra.

r-Hollowings. Let K be a pure 3-complex with n simplexes. A set of triangles
∆̂1, . . . , ∆̂k form a triangle path of length k − 1 if for any 1 ≤ i ≤ k − 1, ∆̂i and ∆̂i+1

share an edge. The triangle distance between two triangles ∆1 and ∆2 is the shortest
triangle path length between ∆1 and ∆2. The triangle diameter of K is the longest trian-
gle distance between any two triangles. A spherical shell is {x ∈ R3 : R1 ≤ ∥x∥2 ≤ R2}
where R1 < R2. If K triangulates a spherical shell, we define the shell width to be the
shortest triangle distance between any two triangles where one is on the outer sphere and
one is on the inner sphere.

Definition 6.3.2 (r-Hollowing). Let K be a 3-complex with n simplexes, and let r =
o(n) be a positive number. We divide K into O(n/r) regions each of O(r) simplexes,
O(r2/3) boundary simplexes, and O(r2/3) exterior simplexes. Non-boundary simplexes
are called interior simplexes.2 Interior simplexes from different regions do not share any
subsimplexes. The boundary of each region triangulates a spherical shell in R3 and has
triangle diameter O(r1/3) and shell width at least 5. The union of all boundary simplexes
of each region is referred to as an r-hollowing of K.

Figure 6.1 illustrates an example of r-hollowing by showing a cross-section of a 3-
complex. The left figure presents a cross-section of a 3-complex K with two holes inside,
depicted as two empty discs. The outlines in black represent the “exterior simplexes” of
K. On the right-hand side of Figure 6.1, the gray area represents an r-hollowing of K.
It divides K into 4 balanced regions {(1), (2), (3), (4)}, each indicated by the area inside
the red, blue, green, or orange outline, respectively. Region (1) includes the smaller
hole, while the larger hole “intersects” regions (3) and (4). The unshaded area inside the
squares corresponds to “interior simplexes,” which encompasses the exterior simplexes of
the smaller hole and the left half of the larger hole. In contrast, the gray area represents
“boundary simplexes,” including the exterior simplexes of the right half of the larger hole.
The shell width is indicated by arrows.

In the full version, [DZ23b] examines sufficient conditions for 3-complexes that enable
us to compute an r-hollowing in nearly-linear time. Here, we focus on the case where K
is already equipped with a known r-hollowing.

2We would like to emphasize that “exterior simplex” is defined for any 3-complex, while “boundary
simplex” and “interior simplex” are defined for r-hollowing. Although boundary and interior simplexes
are mutually exclusive, an exterior simplex can be either a boundary or an interior simplex for a region
of an r-hollowing.

104 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

(1) (2)

(3) (4)

Figure 6.1: A cross-sectional illustration of an r-hollowing.

Algorithms for Solving Linear Equations. Our algorithm combines two of the most
important tools for solving linear systems: Nested Dissection and preconditioning.

Theorem 6.3.3 (Nested Dissection [MT90]). Let A ∈ Rn×n be a symmetric matrix
defined on a simple tetrahedral mesh. A Cholesky factorization A = PLL⊤P⊤ can be
computed in time O(n2), in which P is a permutation matrix and L is a lower triangular
matrix with O(n4/3) non-zero entries. As a result, a linear system in A can be solved in
time O(n2) by Gaussian Elimination.

Theorem 6.3.4 (Preconditioned Conjugate Gradient [Axe85]). Let A,B ∈ Rn×n be two
symmetric PSD matrices, and let b ∈ Rn. Each iteration of Preconditioned Conjugate
Gradient multiplies one vector with A, solves one system of linear equations in B , and
performs a constant number of vector operations. For any ϵ > 0, the algorithm outputs an
x satisfying

∥∥Ax −ΠIm(A)b
∥∥
2
≤ ϵ

∥∥ΠIm(A)b
∥∥
2
in O(

√
κ log(κ/ϵ)) such iterations, where

ΠIm(A) is the orthogonal projection matrix onto the image of A and κ = κ(A,B).

6.4 Main Results

We formally state our main results as follows.

Theorem 6.4.1 (A Pure 3-Complex). Let K be a pure 3-complex embedded in R3 con-
sisting of n stable simplexes and with a known r-hollowing. Let L1 be the 1-Laplacian
operator of K, and let Π1 be the orthogonal projection matrix onto the image of L1. For
any vector b and ϵ > 0, we can find a solution x̃ such that ∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 in
time

O
(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3

)
.

We will overview our algorithm for Theorem 6.4.1 in Section 6.5 and provide detailed
proofs in Section 6.6, 6.7, 6.8, and 6.9.

Theorem 6.4.2 (A Union of Pure 3-Complexes). Let U be a union of pure 3-complexes
glued together by identifying certain subsets of their exterior simplexes. Assume that
each 3-complex chunk is embedded in R3, contains ni stable simplexes, and has a known
Θ(n

3/5
i)-hollowing. Let L1 be the 1-Laplacian operator of U , and let Π1 be the orthogonal

projection matrix onto the image of L1. For any vector b and ϵ > 0, we can find a
solution x̃ such that ∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 in time

Õ(n8/5 + n3/10k2 + k3),

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 105

where n is the number of simplexes in U and k is the number of exterior simplexes shared
by more than one chunk.

We will defer our proof of Theorem 6.4.2 to Section 6.10.

6.5 Algorithm Overview

Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [Coh+14a] observed that

L†
1 =

(
Ldown

1

)†
+ (Lup

1)† ,

where Ldown
1 = ∂⊤

1 W 0∂1 is the down-Laplacian and Lup
1 = ∂2W 2∂

⊤
2 is the up-Laplacian.

The orthogonal projection matrices onto Im(∂⊤
1) and Im(∂2) are:

Πdown
1

def
= ∂⊤

1 (∂1∂
⊤
1)

†∂1, Πup
1

def
= ∂2(∂

⊤
2 ∂2)

†∂⊤
2 .

Lemma 6.5.1 (Lemma 4.1 of [Coh+14a]). Let b be a vector. Consider the systems
of linear equations: L1x = Π1b,L

up
1 x up = Πup

1 b,Ldown
1 x down = Πdown

1 b. Then, x =
Πup

1 x up +Πdown
1 x down.

Lemma 6.5.1 implies that four operators are needed to approximate L†
1: (1) an ap-

proximate projection operator Π̃down
1 ≈ Πdown

1 , (2) an approximate projection operator

Π̃up
1 ≈ Πup

1 , (3) a down-Laplacian solver Z down
1 such that Ldown

1 Z down
1 b ≈ b for any

b ∈ Im(Lup
1), and (4) an up-Laplacian solver Z up

1 such that Lup
1 Z up

1 b ≈ b for any
b ∈ Im(Lup

1).

6.5.1 Down-Laplacian

We will apply the same approximate orthogonal projection Π̃down
1 given in [Coh+14a],

which does not depend on Betti numbers. Our solver for the first down-Laplacian is a
slight modification of the one in [Coh+14a] to incorporate simplex weights. We state the
two lemmas but defer their proofs to Section 6.6.

Lemma 6.5.2 (Down-Projection Operator, Lemma 3.2 of [Coh+14a]). Let K be a 3-

complex with n simplexes. For any ϵ > 0, there exists a linear operator Π̃down
1 , computable

in nearly-linear time, such that

(1− ϵ)Πdown
1 ≼ Π̃down

1 (ϵ) ≼ Πdown
1 .

Lemma 6.5.3 (Down-Laplacian Solver). Let K be a weighted simplicial complex, and let
b ∈ Im(Ldown

1). There exists an operator Z down
1 such that Ldown

1 Z down
1 b = b. In addition,

we can compute Z down
1 b in linear time.

6.5.2 Solver for Up-Laplacian

One of our primary technical contributions is the development of an efficient solver for
the up-Laplacian system, stated in Lemma 6.5.4. We will describe the key idea behind
our solver in this section.

106 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

Lemma 6.5.4 (Up-Laplacian Solver). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes. Suppose we are given an r-hollowing for K where r =
o(n). Then for any ϵ > 0, there exists an operator Z up

1 such that

∀b ∈ Im(Lup
1), ∥Lup

1 Z up
1 b − b∥2 ≤ ϵ ∥b∥2 .

In addition, Z up
1 b can be computed in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3

)
.

We remark that Lemma 6.5.4 can be improved to Õ(n3/2) by using a slightly dif-
ferent r-hollowing (proved in Section 10 of [DZ23b]), which might be of independent
interest. Since the bottleneck of our solver for 1-Laplacians is from the projection for up
1-Laplaicans, we use the same r-hollowing here.

The given r-hollowing suggests a partition of the edges in K into F ∪ C. We will
explain the concrete partition shortly. We have the following matrix identity:

Lup
1 =

[
I

Lup
1 (C,F)Lup

1 (F, F)† I

] [
Lup

1 (F, F)
Sc(Lup

1)C

] [
I Lup

1 (F, F)†Lup
1 (F,C)

I

]
,

where
Sc(Lup

1)C = Lup
1 (C,C)− Lup

1 (C,F)Lup
1 (F, F)†Lup

1 (F,C).

The following Lemma 6.5.5 reduces (approximately) solving a system in Lup
1 to (approx-

imately) solving two systems in Lup
1 (F, F) and one system in Sc(Lup

1)C , which is proved
in Appendix C. It is worth noting that Lemma 6.5.5 holds if we replace Lup

1 with an
arbitrary symmetric PSD matrix, and we will apply it or its variants for different PSD
matrices in our solvers. To avoid introducing additional notations, we state the lemma
below in terms of Lup

1 .

Lemma 6.5.5. Suppose we have two operators:

1. UpLapFSolver(·) such that given any b ∈ Im(Lup
1 (F, F)), UpLapFSolver(b)

returns a vector x satisfying Lup
1 (F, F)x = b;

2. SchurSolver(·, ·) such that for any h ∈ Im(Sc(Lup
1)C) and δ > 0,

SchurSolver(h , δ) returns x̃ satisfying ∥Sc(Lup
1)C x̃ − h∥2 ≤ δ ∥h∥2 .

Given any b =

[
bF

bC

]
∈ Im(Lup

1) and any ϵ > 0, let

h = bC − Lup
1 (F, F) ·UpLapFSolver(bF),

x̃C = SchurSolver(h , δ),

x̃F = UpLapFSolver (bF − Lup
1 (F,C)x̃C) ,

(6.1)

where δ ≤ ϵ

1+∥Lup
1 (F,F)Lup

1 (F,F)†∥
2

. Then,

∥Lup
1 x̃ − b∥2 ≤ ϵ ∥b∥2 ,

where x̃ =

[
x̃F

x̃C

]
. Let mF = |F | and mC = |C|, and let UpLapFSolver have runtime

t1(mF) and SchurSolver have runtime t2(mC). Then, we can compute x̃ in time
O(t1(mF) + t2(mC) +mF +mC).

The proof of Lemma 6.5.5 can be found in Appendix C.

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 107

Partitioning the Edges

As suggested by Lemma 6.5.5, we want to partition the edges of K into F ∪ C so that
both systems in Lup

1 (F, F) and the Schur complement Sc(Lup
1)C can be efficiently solved.

The given O(n3/5)-hollowing divides K into “disjoint” and balanced regions with small
boundary. Let F be the set of the interior edges of the regions and C be the set of the
boundary edges.

We first show that the interiors of different regions are “disjoint” in the sense that
Lup

1 (F, F) is a block diagonal matrix where each diagonal block corresponds to the interior
of a region. We can write Lup

1 as the sum of rank-1 matrices that each corresponds to a
triangle in K:

Lup
1 = ∂2W 2∂

⊤
2 =

∑
σ:triangle in K

W 2(σ, σ) · ∂2(:, σ)∂2(:, σ)⊤.

For any two edges e1, e2, L
up
1 (e1, e2) = 0 if and only if no triangle in K contains both

e1, e2. By our definition of r-hollowing in Definition 6.3.2, for different regions R1, R2 of
K w.r.t. an r-hollowing, no triangle contains both an edge from R1 and an edge from R2.

In addition, the following lemma shows that the boundaries of the regions well ap-
proximate the Schur complement onto the boundaries. The proof is in Section 6.7.2.

Lemma 6.5.6 (Spectral Bounds for r-Hollowing). Let K be a pure 3-complex embedded
in R3 composed of stable simplexes. Let T be an r-hollowing of K, and let C be the edges
of T . Then,

Lup
1,T ≼ Sc(Lup

1)C ≼ O(r)Lup
1,T .

Proof of Lemma 6.5.4 for Up-Laplacian Solver

Algorithm 2 sketches a pseudo-code for our up-Laplacian solver.

Algorithm 2: UpLapSolver(K, T , b, ϵ)
Data: A pure 3-complex K of n stable simplexes with up-Laplacian Lup

1 , an
r-hollowing T , a vector b ∈ Im(Lup

1), an error parameter ϵ > 0
Result: An approximate solution x̃ such that ∥Lup

1 x̃ − b∥2 ≤ ϵ ∥b∥2
1 F ← the interior edges of regions of K w.r.t. T ; C ← the boundary edges of

regions.
2 UpLapFSolver(·)← a solver by Nested Dissection that satisfies the

requirement in Lemma 6.5.5.
3 SchurSolver(·, ·)← a solver by Preconditioned Conjugate Gradient with the

preconditioner being the up-Laplacian of T that satisfies the requirement in
Lemma 6.5.5.

4 x̃ ← computed by Equation (6.1)
5 return solution x̃

By Lemma 6.5.5, the x̃ returned by Algorithm 2 satisfies ∥Lup
1 x̃ − b∥2 ≤ ϵ ∥b∥2. To

bound the runtime of Algorithm 2, we need the following lemmas for lines 2 and 3.

108 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

Lemma 6.5.7 (Solver for the “F” Part). Let K be a pure 3-complex embedded in R3

and composed of n stable simplexes. Let T be an r-hollowing of K, and let F be the
set of interior edges in each region of K w.r.t. T . Then, with a pre-processing time
O(nr), there exists a solver UpLapFSolver(·) such that given any bF ∈ im(Lup

1 (F, F)),
UpLapFSolver(bF) returns an xF such that Lup

1 (F, F)xF = bF in time O(nr1/3).

By our choice of F , the matrix Lup
1 (F, F) can be written as a block diagonal matrix

where each block corresponds to a region of K w.r.t. the r-hollowing T . Since each region
is a 3-complex in which every tetrahedron has an aspect ratio O(1), we can construct the
solverUpLapFSolver by Nested Dissection [MT90]. However, since each row or column
of Lup

1 (F, F) corresponds to an edge in K, we need to turn the good vertex separators
in [MT90] into good edge separators for regions of K. We prove Lemma 6.5.7 in Section
6.7.1.

Lemma 6.5.8 (Solver for the Schur Complement). Let K be a pure 3-complex embedded in
R3 and composed of n stable simplexes. Let T be an r-hollowing of K, and let C be the set
of boundary edges of each region of K w.r.t. T . Then, with a pre-processing time O(nr+
n2r−2/3) there exists a solver SchurSolver(·, ·) such that for any h ∈ Im(Sc(Lup

1)C)
and δ > 0, SchurSolver(h , δ) returns an x̃C such that ∥Sc(Lup

1)C x̃C − h∥2 ≤ δ ∥h∥2
in time Õ

(
nr5/6 + n4/3r5/18

)
.

Our solver SchurSolver is based on the Preconditioned Conjugate Gradient (PCG)
with the preconditioner Lup

1,T , the up-Laplacian operator of T . By Theorem 6.3.4 and

Lemma 6.5.6, the number of PCG iterations is Õ(
√
r). In each PCG iteration, we solve

the system in Lup
1,T via Nested Dissection. We prove Lemma 6.5.8 in Section 6.7.2.

Given the above lemmas, we prove Lemma 6.5.4.

Proof of Lemma 6.5.4. The correctness of Algorithm 2 is by Lemma 6.5.5. By Lemma
6.5.7 and 6.5.8, the total runtime of the algorithm is

Õ
(
nr5/6 + n4/3r5/18 + nr + n2r−2/3

)
.

6.5.3 Projection onto the Image of Up-Laplacian

As the first Betti number of K can be arbitrary, the approximate projection operators for
the up 1-Laplacian provided in [Coh+14a; Bla+22; BN22] are not applicable here. Our
approximate projection operator follows a similar approach to our up-Laplacian solver,
which is based on an incomplete Nested Dissection for triangles, instead of edges.

Lemma 6.5.9 (Up-Projection Operator). Let K be a pure 3-complex embedded in R3

and composed of n stable simplexes. Suppose we are given an r-hollowing for K. Then,
for any ϵ > 0, there exists an operator Π̃up

1 such that for any b, Π̃up
1 b is in the image of

Lup
1 , and ∥∥∥Π̃up

1 b −Πup
1 b
∥∥∥
2
≤ ϵ ∥Πup

1 b∥2 .

In addition, Π̃up
1 b can be computed in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3

)
.

A detailed proof of Lemma 6.5.9 is deferred to Section 6.8. The subsequent Lemma
offers a helpful formula of Πup

1 , the orthogonal projection matrix onto the image of Lup
1 .

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 109

Lemma 6.5.10. Let K be a simplicial complex with boundary operator ∂2. For any
partition F ∪ C of the 2-simplexes of K, the orthogonal projection Πup

1 for K can be
decomposed as

Πup
1 = ΠIm(∂2(:,F)) +ΠKer(∂⊤

2 (F,:))∂2(:, C)(Sc(Ldown
2)C)

†∂⊤
2 (C, :)ΠKer(∂⊤

2 (F,:)),

where Ldown
2 is the down 2-Laplacian.

Once more, an r-hollowing offers a natural partition of the triangles within K. We
assign all the interior triangles to F and all the boundary triangles to C. As such, Nested
Dissection can be utilized to compute ΠIm(∂2(:,F)) and ΠKer(∂⊤

2 (F,:)), and PCG to solve the
system in the Schur complement. The primary technical challenge arises when bounding
the relative condition number of the Schur complement and the preconditioner, which
requires a different approach.

6.6 Solver for Down-Laplacian

This section shows how to solve Ldown
1 x down = b for any b ∈ Im(Ldown

1) in linear time and
proves Lemma 6.5.3. Recall that Ldown

1 = ∂⊤
1 W 0∂1. Our down-Laplacian solver works

for any simplicial complexes and returns a solution without error. Our approach is a
slight modification of the down-Laplacian solver in [Coh+14a] to incorporate the vertex

weights W 0. Specifically, we compute x down by three steps: solve ∂⊤
1 W

1/2
0 y = b, project

y onto Im(W
1/2
0 ∂1) and get a new vector y ′, then solve W

1/2
0 ∂1x

down = y ′. The first
and the last steps can be solved by the approach in Lemma 4.2 of [Coh+14a] (stated
below), and the second step can be explicitly solved by utilizing that ∂1 is a vertex-edge
incidence matrix of an oriented graph.

Lemma 6.6.1 (Restatement of Lemma 4.2 of [Coh+14a]). Given any b1 ∈ Im(∂⊤
1)

(respectively, b0 ∈ Im(∂1)), there is a linear operator ∂+⊤
1 such that ∂⊤

1 ∂
+⊤
1 b1 = b1

(respectively, ∂+
1 = (∂+⊤

1)⊤ such that ∂1∂
+
1 b0 = b0). In addition, we can compute ∂+⊤

1 b1

(respectively, ∂+
1 b0) in linear time.

We remark that the operators ∂+
1 and ∂+⊤

1 in Lemma 6.6.1 are not necessary to be
the pseudo-inverses of ∂1 and ∂⊤

1 .

Claim 6.6.2 explicitly characterizes the image of W
1/2
0 ∂1.

Claim 6.6.2. Let K be a simplicial complex whose 1-skeleton is connected, and let v be
the number of vertices in K. Let W 0 = diag (w1, . . . , wv) where w1, . . . , wv > 0. Then,

Ker(∂⊤
1 W

1/2
0) = span {u} , where u =

(
1
√
w1

, . . . ,
1
√
wv

)⊤

.

Proof. Let dim(V) be the dimension of a space V . Since all the diagonals of W 0 are
positive,

dim(Ker(∂⊤
1 W

1/2
0)) = dim(Ker(∂⊤

1)) = v − dim(Im(∂1)) = 1,

where the last equality holds since the 1-skeleton of K is connected. We can check that

∂⊤
1 W

1/2
0 u = ∂⊤

1 1 = 0.

Here, 1 is the all-one vector, and the second equality holds since ∂1 is the vertex-edge
incidence matrix of an oriented (weakly) connected graph. Thus, the statement holds.

110 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

We construct our down-Laplacian solver by combining Lemma 6.6.1 and Claim 6.6.2.
We remark that this down-Laplacian solver applies to any simplicial complex.

Proof of Lemma 6.5.3. Without loss of generality, we assume the 1-skeleton of K is con-
nected. Otherwise, we can write Ldown

1 as a block diagonal matrix, each corresponding to
a connected component of the 1-skeleton, and we reduce solving a system in Ldown

1 into
solving several smaller down-Laplacian systems.

Let ∂+
1 , ∂

+⊤
1 be the linear operators in Lemma 6.6.1 for K, and let u be the vector in

Claim 6.6.2. We define

Z down
1

def
= ∂+

1 W
−1/2
0

(
I − uu⊤

∥u∥22

)
W

−1/2
0 ∂+⊤

1 .

We can compute Z down
1 b in linear time. In addition, we define

y = ∂+⊤
1 b, z = W

−1/2
0 y , z 1 =

(
I − uu⊤

∥u∥22

)
z , and x = ∂+

1 W
−1/2
0 z 1.

Then, z 1 ∈ Im(W
1/2
0 ∂1) and z − z 1 ∈ Ker(∂⊤

1 W
1/2
0).

Ldown
1 Z down

1 b = ∂⊤
1 W 0∂1x = ∂⊤

1 W 0∂1∂
+
1 W

−1/2
0 z 1

= ∂⊤
1 W 0W

−1/2
0 z 1 since W

−1/2
0 z 1 ∈ Im(∂1)

= ∂⊤
1 W

1/2
0 z since z − z 1 ∈ Ker(∂⊤

1 W
1/2
0)

= ∂⊤
1 y = b.

6.7 Solver for Up-Laplacian

In this section, we will prove the two key lemmas, Lemma 6.5.7 and Lemma 6.5.8, for
building the first up-Laplacian solver.

6.7.1 Solver for Lup
1 (F, F)

In this section, we construct an efficient solver UpLapFSolver(b) that returns an x
such that Lup

1 (F, F)x = b for any b ∈ Im(Lup
1 (F, F)) and prove Lemma 6.5.7.

We first show that the interiors of different regions are “disjoint” in the sense that
Lup

1 (F, F) can be written as a block diagonal matrix where each diagonal block corre-
sponds to the interior of a region after proper row and column permutation. By definition,
we can write Lup

1 as the sum of rank-1 matrices that each corresponds to a triangle in K:

Lup
1 = ∂2W 2∂

⊤
2 =

∑
σ:triangle in K

W 2(σ, σ) · ∂2(:, σ)∂2(:, σ)⊤.

For any two edges e1, e2, L
up
1 (e1, e2) = 0 if and only if no triangle in K contains both

e1, e2. We say such e1 and e2 are ∆-disjoint. The following claim shows that interior
edges from different regions are ∆-disjoint.

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 111

Claim 6.7.1. Let K be a stable 3-complex and T be an r-hollowing of K. Let R1, R2 be
two different regions of K w.r.t. T , and let e1 be an interior edge in R1 and e2 an interior
edge in R2. Then, e1 and e2 are ∆-disjoint.

Proof. Assume by contradiction there exists a triangle σ ∈ K that contains both e1, e2.
Let e3 be the third edge in σ. Since e1, e2 are interior edges of different regions R1, R2,
e3 must cross the boundary of R1, R2. This contradicts the fact that regions can only
intersect on their boundaries. Thus, e1, e2 must be ∆-disjoint.

By the above Claim 6.7.1, computing an x such that Lup
1 (F, F)x = b reduces to

computing a solution for each diagonal block submatrix per region. For this reason,
Lemma 6.5.7 is a corollary of the following Lemma 6.7.2.

Lemma 6.7.2. Let X be a 3-complex with O(r) simplexes embedded in R3 such that (1)
each tetrahedron of X has O(1) aspect ratio, and (2) X has O(r2/3) exterior simplexes.
Let F be the set of interior edges of X , and let Lup

1,X be the up-Laplacian of X and

M
def
= Lup

1,X (F, F). Then, there is a permutation matrix P and a lower triangular matrix

L with O(r4/3) non-zeros such that

M = PLL⊤P⊤. (6.2)

In addition, we can find such P and L in time O(r2). Given the above factorization, for
any b ∈ Im(M), we can compute an x such that Mx = b in O(r4/3) time.

The factorization in Equation (6.2) is called Cholesky factorization. We will utilize
the geometric structures of X to find a sparse Cholesky factorization efficiently. Miller
and Thurston [MT90] studied vertex separators of the 1-skeleton of a 3-complex X in
which each tetrahedron has O(1) aspect ratio. A subset of vertices S of a graph over v
vertices δ-separates if the remaining vertices can be partitioned into two sets A,B such
that there are no edges between A and B, and |A| , |B| ≤ δv. The set S is an f(v)-
separator if there exists a constant δ < 1 such that S δ-separates and |S| ≤ f(v). These
separators can be incorporated with Nested Dissection to efficiently compute a sparse
Cholesky factorization of a matrix in which the non-zero structure encodes the 1-skeleton
of X .

Theorem 6.7.3 (Vertex Separator for a 3-Complex, Theorem 1.5 of [MT90] and
[Mil+98]). Let X be a 3-complex in R3 in which each tetrahedron has O(1) aspect ra-
tio, and suppose X has t tetrahedra and v̄ exterior vertices. Then, the 1-skeleton of X
has a O(t2/3 + v̄)-separator that 4/5-separates X . In addition, such a separator can be
found in linear time.

We need a slightly modified version of Theorem 6.7.3 to apply to our matrix M .

Corollary 6.7.4 (Edge Separator for a 3-Complex). Let X be a 3-complex that satisfies
the requirements in Theorem 6.7.3. In addition, the 1-skeleton of X is connected. Let m
be the number of edges in X . Then, there exists an algorithm that removes O(t2/3 + v̄)
edges in linear time so that the remaining edges can be partitioned into two ∆-disjoint
sets, each of size at most cm for some constant c < 1.

Proof. Let v = O(r) be the number of vertices in X . By Lemma 6.3.1, v = Θ(m). Let S
be the set of O(t2/3 + v̄) vertices that 4/5-separates X (by Theorem 6.7.3), and let A,B

112 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

be two disjoint sets of the remaining vertices after removing S such that |A| , |B| ≤ 4v/5.
Let E be the set of edges in X incident to some vertex in S. Since each vertex has O(1)
degree by Lemma 6.3.1, |E| = O(|S|) = O(t2/3+ v̄). Now, we remove edges in E from the
edges of X . Let EA be the set of the remaining edges incident to a vertex in A, and let EB

be the set of the remaining edges incident to a vertex in B. Since A,B are disjoint, EA

and EB are ∆-disjoint. We then show that |EA| , |EB| ≤ cm for some constant c < 1. Let
E ′

A be the set of edges in X that are incident to some vertex in A. Since the 1-skeleton
of X is a connected graph, |E ′

A| ≥ |A| ≥ (1− o(1))v
5
. Besides, |E ′

A| = |EA|+ |E ′′
A|, where

E ′′
A contains edges with one endpoint in A and the other in S. Since |E ′′

A| = O(t2/3 + v̄),
we know |EA| ≥ (1 − o(1))v

5
> c′m for some constant c′. Since EA and EB are disjoint,

we know |EB| ≤ m− |EA| ≤ (1− c′)m. By symmetry, we have |EA| ≤ (1− c′)m.

We need the following theorem about Nested Dissection from [LRT79].

Theorem 6.7.5 (Nested Dissection, Theorem 6 of [LRT79]). Let G be any class of graphs
closed under subgraph on which a vα-separator exists for α > 1/2. Let A ∈ Rv×v be
symmetric and positive definite (that is, all eigenvalues of A are positive). Let GA be a
graph over vertices {1, . . . , v} where vertices i, j are connected if and only if A(i, j) ̸= 0.
If GA ∈ G, then we can find a permutation matrix P and a lower triangular matrix L
with O(v2α) non-zeros in O(v3α) time such that A = PLL⊤P⊤.

Combining Corollary 6.7.4 and Theorem 6.7.5, we prove Lemma 6.7.2.

Proof of Lemma 6.7.2. Our approach for finding a sparse Cholesky factorization is the
same as Section 4 of [MT90]. Specifically, we find a family of separators for X by recur-
sively applying Corollary 6.7.4 to the remaining sets of edges A,B. Since the separator
size grows as a function of the exterior vertices, at the top level of the recursion, we
include all the exterior edges O(r2/3) in the root separator, which only increases the root
separator by a constant factor. In each remaining recursion step, suppose we want to
separate Y , a sub-complex of X ; we let Ȳ be the complex consisting of Y and all the
simplexes in X that contain a vertex in Y . Then we apply a slightly modified version of
Corollary 6.7.4 (obtained by a slightly modified Theorem 6.7.3) to Ȳ in which we only
separate Y . Here, the exterior-vertex term O(v̄) in the size of the separator can be ignored
since all the exterior edges of Ȳ have already been included in upper-level separators; we
also use the fact that the number of exterior vertices and the number of exterior edges are
equal up to a constant factor. This separator family provides an elimination ordering for
the edges of K, which is the permutation matrix P in Equation (6.2), and the ordering
uniquely determines the matrix L. By Theorem 6.7.5, L has O(r4/3) non-zeros, and P ,L
can be found in time O(r2).

One issue left is that M in Lemma 6.7.2 is positive semidefinite but not positive
definite. During the process of numeric factorization, the first row and column of some
Schur complements are all-zero. We simply ignore these zeros and proceed (Ref: Chapter
4.2.8 of [GV96]). This produces a Cholesky factorization of P⊤MP = LL⊤ such that
only k columns of L are non-zero, where k is the rank of M . We permute the rows and
the columns of L by multiplying permutation matrices P1,P2 so that

P1LP2 =
[
T 0

] def
=

[
H1 0
H2 0

]
,

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 113

where H1 is a k × k non-singular lower-triangular matrix. Then, solving Mx = b is
equivalent to solving

TT⊤z = P1P
⊤b

def
= f , P1P

⊤x = z .

We solve the first system by solving Ty = f and T⊤z = y . We let y satisfy H1y =
f [1 : k]. Since H1 has full rank and O(r4/3) non-zeros, such a y exists and can be found
in O(r4/3) time. Since y ∈ Im(T), we know Ty = f . Then we let z [k+1 : v] = 0, where
v is the number of vertices in X , and we let H⊤

1 z [1 : k] = y . Again, such z exists and
can be found in O(r4/3) time. Finally, we compute x = PP⊤

1 z in linear time.

Proof of Lemma 6.5.7. We apply Lemma 6.7.2 to each diagonal block matrix of Lup
1 (F, F)

to compute a sparse Cholesky factorization as in Equation (6.2) in time

O
(n
r
· r2
)
= O(nr).

Given this Cholesky factorization, we can solve a system in Lup
1 (F, F) in time

O
(n
r
· r4/3

)
= O

(
nr1/3

)
.

6.7.2 Solver for the Schur Complement

In this section, we establish a fast approximate solver for Sc(Lup
1)C and prove Lemma

6.5.8. Recall that C contains all the edges in T (an r-hollowing of K), and Sc(Lup
1]C is

the Schur complement of the up-Laplacian operator of K onto C. The idea is to run the
Preconditioned Conjugate Gradient (PCG) for systems in Sc(Lup

1)C with preconditioner
Lup

1,T = ∂2,T ∂
⊤
2,T , which is the first up-Laplacian operator of T . By Theorem 6.3.4, the

number of PCG iterations is O(
√
κ log(κ/ϵ)) where κ = κ(Sc(Lup

1)C ,L
up
1,T) is the relative

condition number and ϵ is the error parameter; in each PCG iteration, we need to solve
a system in Lup

1,T , multiply Sc(Lup
1]C with O(1) vectors, and implement O(1) vector oper-

ations. In Section 6.7.2, we upper bound the relative condition number. In Section 6.7.2,
we prove Lemma 6.5.8 about the solver for Schur complement.

We will need the following observation.

Claim 6.7.6. Let X be a simplicial complex. Changing the orientations of the triangles
in X does not change its first up-Laplacian operator.

Proof. Let ∂2,X be the second boundary operator of X , W 2,X the diagonal matrix for
the triangle weights, and Lup

1,X the first up-Laplacian. Changing the orientations of the
triangles in X corresponds to multiplying a ±1 diagonal matrix X to the right of ∂2,X .
Observe

∂2,X (XW 2,XX)∂⊤
2,X = ∂2,XW 2,X∂

⊤
2,X = Lup

1,X .

Thus the statement holds.

114 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

Preconditioning the Schur Complement

We will upper bound the relative condition number of Sc(Lup
1)C and Lup

1,T and prove will
Lemma 6.5.6.

We decompose the r-hollowing T into two parts. Recall that the boundary of each
region triangulates a spherical shell in R3. Let B1 be a 2-complex of the union of all the
inner spheres of the boundaries, and let B2 be a 2-complex of the rest of the boundaries.

Let C1 be the set of edges of B1. Let L̂up
1 be the first up-Laplacian of the union of B1 and

all the interior simplexes in all the regions. Then,

Lup
1,T = Lup

1,B1
+ Lup

1,B2
and Sc(Lup

1)C = Sc(L̂up
1)C1 + Lup

1,B2
.

Claim 6.7.7. If Lup
1,B1

≼ Sc(L̂up
1)C1 ≼ αLup

1,B1
, where α > 1, then

Lup
1,T ≼ Sc(Lup

1)C ≼ αLup
1,T .

Proof. We have

Sc(Lup
1)C ≽ Lup

1,B1
+ Lup

1,B2
= Lup

1,T ,

Sc(Lup
1)C ≼ αLup

1,B1
+ Lup

1,B2
≼ αLup

1,T .

To prove Lemma 6.5.6, it suffices to show the following lemma.

Lemma 6.7.8.
Lup

1,B1
≼ Sc(L̂up

1)C1 ≼ O(r)Lup
1,B1

.

The first inequality of Lemma 6.7.8 follows immediately from a well-known fact about
Schur complements, stated in Fact 2.3.7. For completeness, we restate it below.

Fact 6.7.9. Let A be a symmetric and PSD matrix:

A =

[
A(F, F) A(F,C)
A(C,F) A(C,C)

]
.

Let Sc(A)C = A(C,C) −A(C,F)A(F, F)†A(F,C) be the Schur complement of A onto
C. Then, for any x ∈ R|C|,

min
y∈R|F |

[
y⊤ x⊤]A [y

x

]
= x⊤Sc(A)Cx .

As a corollary, Sc(A)C is symmetric and PSD.

In the rest of the section, we prove the second inequality in Lemma 6.7.8. Since both

L̂up
1 and Lup

1,B1
can be written as a block diagonal matrix where each block corresponds

to a region w.r.t. T (after proper row and column permutation), it suffices to show the
inequality in Lemma 6.7.8 holds for each region, restated in the following lemma.

Lemma 6.7.10. Consider an r-hollowing region. Let B be the 2-complex of the inner
sphere of the boundary, and let B be the set of edges in B. Let X be a 2-complex of the
union of B and the interior simplexes. Then,

Sc(Lup
1,X)B ≼ O (r)Lup

1,B.

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 115

We first show that the images of Sc(Lup
1,X)C and Lup

1,B are equal.

Claim 6.7.11.

Im(Sc(Lup
1,X)B) = Im(Lup

1,B).

Proof. In the proof, we drop the subscript X to simplify our notations by letting Lup
1 =

Lup
1,X and ∂2 = ∂2,X . We let A be the set of edges in X but not in B, and let VA be the

set of vertices in X but not in B and VB the set of vertices in B.
Since both the two matrices Sc(Lup

1)B,L
up
1,B are symmetric and PSD, the statement in

the claim is equivalent to Ker(Sc(Lup
1)B) = Ker(Lup

1,B). By Fact 6.7.9,

Lup
1,B ≼ Sc(Lup

1)B =⇒ Ker(Sc(Lup
1)B) ⊆ Ker(Lup

1,B).

It remains to show Ker(Sc(Lup
1)B) ⊇ Ker(Lup

1,B).
Let xB be an arbitrary vector in Ker(Lup

1,B). We want to show xB ∈ Ker(Sc(Lup
1)B),

that is, x⊤
BSc(L

up
1)BxB = 0. By Fact 6.7.9, it suffices to show that there exists an

x =

[
xA

xB

]
such that x⊤Lup

1 x = 0. This is equivalent to x ∈ Ker(∂⊤
2). Suppose we add

tetrahedra, triangles, and necessary edges to X and get a new simplicial complex X ′ so
that B is the boundary of X ′ and X ′ triangulates a 3-ball. Since operator ∂⊤

2 maps the
vector space of edges to the vector space of triangles and no new edges in X ′ can appear

in a triangle in X , it suffices to show there exists an x ′ =

[
x ′

A

xB

]
such that x ′ ∈ Ker(∂⊤

2,X ′)

(restricting x ′
A to xA gives x ∈ Ker(∂⊤

2,X)). Since the first Betti number of X ′ is zero,

x ∈ Ker(∂⊤
2,X ′) ⇐⇒ x ⊥ Im(∂2,X ′) ⇐⇒ x ∈ Im(∂⊤

1,X ′). (6.3)

Let A′ be the set of interior edges in X ′, and VA′ the set of interior vertices in X ′. We
can write

∂⊤
1,X ′ =

[
∂⊤
1,X ′(A′, VA′) ∂⊤

1,X ′(A′, VB)
0 ∂⊤

1,X ′(B, VB)

]
,

where ∂1,X ′(VB, B) = ∂1,B. Since xB ∈ Ker(∂⊤
2,B) and the first Betti number of B is 0, by

an argument similar to Equation (6.3), we have xB ∈ Im(∂⊤
1,B), that is, xB = ∂⊤

1,ByB for
some yB. Setting x ′

A = ∂⊤
1 (A

′, VB)yB, we have x ∈ Im(∂⊤
1,X ′).

Claim 6.7.12.

λmax(Sc(L
up
1,X)B) = O(wmax),

where wmax is the maximum triangle weight in X .

Proof. We drop the subscript X in the proof to simplify our notations. The Courant-
Fischer Minimax Theorem (see Theorem 4.5.7, or Theorem 8.1.2 of [GV96]) states that
for any symmetric matrix A,

λmax(A) = max
x :∥x∥2=1

x⊤Ax .

Apply this theorem and Fact 6.7.9,

λmax(Sc(L
up
1)B) = max

x :∥x∥2=1
x⊤Sc(Lup

1)Bx ≤ max
x :∥x∥2=1

[
0⊤ x⊤]Lup

1

[
0
x

]
≤ λmax(L

up
1).

116 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

Below, we bound λmax(L
up
1):

λmax(L
up
1) = max

x :∥x∥2=1
x⊤Lup

1 x = max
x :∥x∥2=1

∑
σ:triangle in X

W 2(σ, σ)(∂2(:, σ)
⊤x)2

≤ 3wmax · max
x :∥x∥2=1

∑
σ=[i,j,k]:

triangle in X

(x (i)2 + x (j)2 + x (k)2) = O(wmax).

The last inequality holds since each edge appears in at most O(1) triangles by Lemma
6.3.1. Thus, λmax(Sc(L

up
1)B) = O(wmax).

One more piece we need is a lower bound for λmin(L
up
1,B), which will be established via

eigenvalues of graph Laplacian matrices.

Theorem 6.7.13 (Section 4.2 of [Moh91]). Let G be an unweighted graph over n vertices
with diameter D, the length of the longest path in G. Let LG be the graph Laplacian
matrix of G. Then,

λmin(LG) ≥
4

nD
.

Claim 6.7.14.
λmin(L

up
1,B) = Ω(wmin · r−1),

where wmin is the minimum triangle weight in B.

Proof. We drop the subscript B in the proof to simplify our notations. Again we decom-
pose the matrix as a sum of rank-1 matrices for each triangle in B′:

Lup
1 =

∑
σ:triangle in B

W 2(σ, σ)∂2(:, σ)∂2(:, σ)
⊤ ≽ wmin · ∂2∂⊤

2 .

So,
λmin(L

up
1) ≥ wmin · λmin(∂2∂

⊤
2) = wmin · λmin(∂

⊤
2 ∂2).

Since B triangulates a two-sphere, each edge of B appears in exactly two triangles.
Since changing the orientations of the triangles in B does not change Lup

1 (by Claim
6.7.6), we assume all the triangles in B are oriented clockwise. Then, each column of
∂⊤
2 has exactly one entry with value 1 and one entry −1 and all others 0. That is,

∂⊤
2 ∂2 is the Laplacian of the dual graph of B: the vertices are the triangles in B, and

two vertices are adjacent if and only if the corresponding two triangles share a common
edge. The dual graph has O(r2/3) vertices and diameter O(r1/3). By Theorem 6.7.13,
λmin(∂

⊤
2 ∂2) = Ω(wmin · r−1).

Combining all the claims above, we prove Lemma 6.7.10.

Proof of Lemma 6.7.10. Let Π be the orthogonal projection matrix onto Im(Lup
1,B) =

Im(Sc(Lup
1,X)B) (by Claim 6.7.11). By Claim 6.7.12, Sc(Lup

1,X)B ≼ O(wmax)Π. By Claim
6.7.14, Π ≼ O(r

wmin
)Lup

1,B. Combining all together, we have

Sc(Lup
1,X)B ≼ O(rU)Lup

1,B,

where U = wmax

wmin
= O(1).

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 117

Proof of Lemma 6.5.8

By Theorem 6.3.4 and Lemma 6.5.6, the number of Preconditioned Conjugate Gradient
(PCG) iterations is

Õ
(
κ
(
Sc(Lup

1)C ,L
up
1,T
)1/2)

= Õ(r1/2).

In each PCG iteration, we solve a system in Lup
1,T and multiply Sc(Lup

1)C with O(1)
vectors. Recall

Sc(Lup
1)C = Lup

1 (C,C)− Lup
1 (C,F)Lup

1 (F, F)†Lup
1 (F,C).

In our preprocessing, we compute a Cholesky factorization of Lup
1 (F, F) in time O(r2· n

r
) =

O(nr); then, we can multiply Sc(Lup
1)C onto a vector in time O(r4/3 · n

r
) = O(nr1/3).

Similarly, we solve a system in Lup
1,T by Nested Dissection. By our construction, T has

O(r2/3 · n
r
) = O(nr−1/3) triangles. The Cholesky factorization runs in time O(n2r−2/3),

and each system solve runs in time O(n4/3r−4/9). So, the runtime per PCG iteration is

O
(
nr1/3 + n4/3r−4/9

)
.

Therefore, the total time is

Õ
(
r1/2

(
nr1/3 + n4/3r−4/9

)
+ nr + n2r−2/3

)
= Õ

(
nr + n4/3r5/18 + n2r−2/3

)
.

This completes the proof of Lemma 6.5.8.

6.8 Projection onto the Image of Up-Laplacian

In this section, we will show how to approximately project a vector onto the image of the
first up-Laplacian of a well-shaped 3-complex with a given r-hollowing and prove Lemma
6.5.9. The following lemma gives an explicit formula for the orthogonal projection onto
the up-Laplacian.

Lemma 6.8.1. Let K be a simplicial complex with boundary operator ∂2. For any parti-
tion F ∪C of the 2-simplexes of K, the orthogonal projection Πup

1 for K can be decomposed
as

Πup
1 = ΠIm(∂2(:,F)) +ΠKer(∂⊤

2 (F,:))∂2(:, C)(Sc(Ldown
2)C)

†∂⊤
2 (C, :)ΠKer(∂⊤

2 (F,:)). (6.4)

In addition, the second matrix on the right-hand side of the above equation is the orthog-
onal projection matrix onto the image of ΠKer(∂⊤

2 (F,:))∂2(:, C).

Proof. For any b ∈ Rn, we define

f F = ∂⊤
2 (F, :)b, f C = ∂⊤

2 (C, :)b,

h = f C − Ldown
2 (C,F)(Ldown

2 (F, F))†f F ,

xC = (Sc(Ldown
2)C)

†h ,

xF = (Ldown
2 (F, F))†

(
f F − Ldown

2 (F,C)xC

)
.

(6.5)

Let x =

[
xC

xF

]
. Applying Lemma 6.5.5 with δ = 0, we have ∂⊤

2 ∂2x = ∂⊤
2 b. That is,

x can be written as x = x 1 + x 2 where x 1 = (∂⊤
2 ∂2)

†∂⊤
2 b and x 2 is in Ker(∂2). Then,

∂2x = ∂2x 1 = Πup
1 b.

118 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

By Equation (6.5),

Πup
1 b = ∂2x = ΠIm(∂2(:,F))b +ΠKer(∂⊤

2 (F,:))∂2(:, C)(Sc(Ldown
2)C)

†∂⊤
2 (C, :)ΠKer(∂⊤

2 (F,:))b.

Thus, the equation in the statement holds. By Fact 2.3.10,

Sc(Ldown
2)C = ∂⊤

2 (C, :)ΠKer(∂⊤
2 (F,:))∂2(:, C).

The second matrix on the right-hand side of the equation in the statement is the orthog-
onal projection onto the image of ΠKer(∂⊤

2 (F,:))∂2(:, C).

To apply Πup
1 to a vector b, we will need to (1) project b onto Im(∂2(:, F)), (2)

project b onto Ker(∂⊤
2 (F, :)), and (3) solve a system in Sc(Ldown

2)C . We let F be the set
of all the interior triangles of K w.r.t. the given r-hollowing, and let F be the set of
all the boundary triangles. Similar to our up-Laplacian solver, we will apply the Nested
Dissection for the “F” part and the Preconditioned Conjugate Gradient for the Schur
complement onto C.

With a slight modification of the edge separator for a 3-complex (Corollary 6.7.4), we
obtain a triangle separator for a 3-complex as the corollary below.

Corollary 6.8.2 (Triangle Separator for a 3-Complex). Let X be a 3-complex that sat-
isfies the requirements in Theorem 6.7.3 and has a connected 2-skeleton. Let p be the
number of triangles in X . Then, there exists an algorithm that removes O(t2/3+ v̄) trian-
gle in linear time. The remaining triangles can be divided into two sets, each containing
at most cp triangles (where c < 1 is a constant), with no shared edges between the two
sets.

Proof. The proof is very similar to that of Corollary 6.7.4, by replacing edges with trian-
gles.

Given a triangle separator algorithm for a 3-complex, we can obtain a solver for
Ldown

2 (F, F) = ∂⊤
2 (F, :)∂2(:, F) by Nested Dissection. Note Ldown

2 [σ1, σ2] ̸= 0 if and only
if two triangles σ1, σ2 share a common edge.

Lemma 6.8.3. Let X be a 3-complex with O(r) simplexes embedded in R3 such that (1)
each tetrahderon of X has O(1) aspect ratio and (2) X has O(r2/3) exterior simplexes.
Let F be the set of interior triangles of X , and let Ldown

2,X be the second down-Laplacian of

X and M
def
= Ldown

2,X (F, F). Then, there is a permutation matrix P and a lower triangular

matrix L with O(r4/3) non-zeros such that M = PLL⊤P⊤. In addition, we can find
such P and L in time O(r2). Given the above factorization, for any b ∈ Im(M), we can
compute an x such that Mx = b in O(r4/3) time.

Claim 6.8.4. Given any 1-chain vector b, we can compute ΠIm(∂2(:,F))b and ΠKer(∂⊤
2 (F,:))b

in time O(nr).

Proof. We have

ΠIm(∂2(:,F))b = ∂2(:, F)
(
∂⊤
2 (F, :)∂2(:, F)

)†
∂⊤
2 (F, :)b.

We can compute ∂⊤
2 (F, :)b in time O(n). To apply

(
∂⊤
2 (F, :)∂2(:, F)

)†
, we compute a

Cholesky factorization of ∂⊤
2 (F, :)∂2(:, F) in time O(r2 · n

r
) = O(nr) via Nested Dissection

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 119

(Lemma 6.8.3), where the Cholesky factorization has O(r4/3 · n
r
) = O(nr1/3) non-zeros;

given such a Cholesky factorization, we can apply
(
∂⊤
2 (F, :)∂2(:, F)

)†
to a vector in time

O(nr1/3). Then, multiplying ∂2(:, F) with a vector runs in linear time. So, the total
runtime of computing ΠIm(∂2(:,F))b is O(nr). Since ΠKer(∂⊤

2 (F,:)) = I −ΠIm(∂2(:,F)), we can
apply ΠKer(∂⊤

2 (F,:)) to a vector in the same time up to a constant.

It remains to bound the runtime of (approximately) solving a system in the Schur com-
plement Sc(Ldown)C . We run the Preconditioned Conjugate Gradient and precondition
the Schur complement by the boundary itself ∂⊤

2 (C, :)∂2(:, C).

6.8.1 Preconditioning the Schur Complement

In this section, we prove the following lemma for the relative condition number of the
preconditioner for the Schur complement.

Lemma 6.8.5.
κ(Sc(Ldown

2)C , ∂
⊤
2 (C, :)∂2(:, C)) = O(r).

We will bound the relative condition number for each region and then combine them to
get Lemma 6.8.5. Recall that in each region of an r-hollowing, the boundary triangulates
a spherical shell in R3. We call the boundary triangles in a region containing an edge
on the inner sphere of the boundary the boundary layer. Since each region boundary
has its shell width of at least 5, boundary layers from different regions are disjoint. For
the ith region, let S i be the Schur complement of the interior triangles and the triangles
in the boundary layer of the region i onto its boundary layer. We can write the Schur
complement

Sc(Ldown
2)C = diag(S 1, . . . ,S k) +A,

where A is a PSD matrix. Similarly, let M i be the boundary layer of the region i. We
write the boundary

∂⊤
2 (C, :)∂2(:, C) = diag(M 1, . . . ,M k) +A.

By an argument similar to Claim 6.7.7, proving Lemma 6.8.5 reduces to proving the
following lemma.

Lemma 6.8.6. For each i,

Ω(r−1)ΠiM iΠi ≼ S i ≼ M i.

In the rest of this subsection, we prove Lemma 6.8.6. We locally use ∂2 for the
boundary operator of the region i and drop the region index i in the rest of this subsection.
We write

∂⊤
2 =

[
B int

B bd

]
,

where the rows of B int correspond to the interior triangles and the rows of B bd the
boundary layer triangles. The Schur complement onto the boundary layer triangles, by
Fact 2.3.10,

S = B bdΠKer(Bint)B
⊤
bd.

Let M
def
= B bdB

⊤
bd, and let Π be the orthogonal projection onto the image of S . Then,

S ≼ M , and

S ≽ ΠM 1/2M †/2SM †/2M 1/2Π ≽ λmin(M
†/2SM †/2) ·ΠMΠ.

120 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

Claim 6.8.7.

λmin

(
M †/2SM †/2

)
= λmin

(
ΠIm(B⊤

bd)
ΠKer(Bint)ΠIm(B⊤

bd)

)
.

Proof. We take the singular value decomposition: B bd = UDV ⊤, where the columns of
U (resp., V) form an orthonormal basis of Im(B bd) (resp., Im(B⊤

bd)). Then,

M †/2SM †/2 = UD−1U ⊤UDV ⊤ΠKer(Bint)VDU ⊤UD−1U ⊤ = UV ⊤ΠKer(Bint)VU ⊤.

Since U ’s columns are orthonormal,

λmin(M
†/2SM †/2) = λmin(V

⊤ΠKer(Bint)V).

We claim

λmin(V
⊤ΠKer(Bint)V) = λmin(VV ⊤ΠKer(Bint)VV ⊤), (6.6)

which implies the claim statement. Let λ be an eigenvalue of V ⊤ΠKer(Bint)V with
eigenvector u . Then,

V ⊤ΠKer(Bint)Vu = λu =⇒ VV ⊤ΠKer(Bint)VV ⊤Vu = λVu

=⇒ ΠIm(B⊤
bd)
ΠKer(Bint)ΠIm(B⊤

bd)
Vu = λVu .

That is, λ is an eigenvalue of ΠIm(B⊤
bd)
ΠKer(Bint)ΠIm(B⊤

bd)
with eigenvector Vu . Let µ

be an eigenvector of ΠIm(B⊤
bd)
ΠKer(Bint)ΠIm(B⊤

bd)
with eigenvector w . Then,

ΠIm(B⊤
bd)
ΠKer(Bint)ΠIm(B⊤

bd)
w = µw =⇒ V ⊤ΠKer(Bint)VV ⊤w = µV ⊤w .

That is, µ is an eigenvalue of V ⊤ΠKer(Bint)V with eigenvector V ⊤w . So, Equation (6.6)
holds.

Claim 6.8.8. The image of ΠIm(B⊤
bd)
ΠKer(Bint)ΠIm(B⊤

bd)
is

U = {u ∈ Im(B⊤
bd) : u ⊥ Im(B⊤

bd) ∩ Im(B⊤
int)}.

Proof. We first find an orthogonal basis of the kernel of ΠIm(B⊤
bd)
ΠKer(Bint)ΠIm(B⊤

bd)
, which

is U ′ def
= {u : ΠIm(B⊤

bd)
ΠKer(Bint)ΠIm(B⊤

bd)
u = 0} = {u : ΠKer(Bint)ΠIm(B⊤

bd)
u = 0}.

Clearly, Ker(B bd) ⊂ U ′. We consider u ∈ Im(B⊤
bd). In this case, ΠKer(Bint)ΠIm(B⊤

bd)
u =

ΠKer(Bint)u = 0 if and only if u ∈ Im(B⊤
int). So, the claim statement holds.

Lemma 6.8.9.
λmin

(
ΠIm(B⊤

bd)
ΠKer(Bint)ΠIm(B⊤

bd)

)
= Ω(r−1).

Proof. By the Courant-Fischer min-max theorem and Claim 6.8.8,

λmin

(
ΠIm(B⊤

bd)
ΠKer(Bint)ΠIm(B⊤

bd)

)
= min

u∈U

u⊤ΠIm(B⊤
bd)
ΠKer(Bint)ΠIm(B⊤

bd)
u

u⊤u
, (6.7)

where U = {u ∈ Im(B⊤
bd) : u ⊥ Im(B⊤

bd) ∩ Im(B⊤
int)} \ {0}.

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 121

Recall that in each region, the boundary triangulates a spherical shell in R3. We
further decompose ∂2 according to the inner sphere of the boundary:

∂2 =
[
B⊤

int | B⊤
bd

]
=

B11 B12 | 0
0 B2 | B3

0 0 | B4

 . (6.8)

Here, the blocks of the rows from top to bottom correspond to the interior edges, the
boundary edges on the boundary inner sphere, and the other boundary edges, respec-
tively; the blocks of the columns from left to right correspond to the interior triangles
with only interior edges, the interior triangles with both interior and boundary edges, and
the boundary triangles, respectively. The column in ∂2 corresponding to a triangle whose
edges are all on the boundary inner sphere can be written as a linear combination of
the other boundary triangle columns. We remove these boundary inner sphere triangles
so that every remaining triangle has at most one edge on the boundary inner sphere.
Without loss of generality, we can orient and reorder the edges and the triangles so that

B2 = diag(1⊤, . . . ,1⊤), B3 = diag(1⊤, . . . ,1⊤). (6.9)

In addition, in each triangle with one edge on the boundary inner sphere, we let the other
two edges point away from the inner sphere so that every column of B12 and of B4 has
exactly two non-zero entries with values 1 and −1 each.

We want to characterize Im(B⊤
int) ∩ Im(B⊤

bd). Let

V def
=


 0
B3x
0

 : x ∈ Ker(B4)

 .

By Equation (6.8), Im(B⊤
int)∩ Im(B⊤

bd) ⊆ V . We will show V ⊆ Im(B⊤
int)∩ Im(B⊤

bd), that
is, V ⊆ Im(B⊤

int). Since the boundary layer triangulates a spherical shell in R3, whose
first Betti number is zero, V is orthogonal to the image of ∂⊤

1 of the boundary layer.
Without loss of generality, we can also assume the 2-complex of the interior triangles
touching the boundary inner sphere has the first Betti number being zero. Otherwise,
we shift the boundary inner sphere towards the boundary outer sphere and include the
boundary layer in the interior part. This can be done since, in the given r-hollowing,
each region boundary triangulates a spherical shell with a “hop” shell width of at least 5.

Under this assumption, V ⊆ Im

B12

B2

0

 ⊆ Im(B⊤
int). Thus, V = Im(B⊤

int) ∩ Im(B⊤
bd).

Then,

U =


 0
B3y
B4y

 : B3y ⊥ B3x , ∀x ∈ Ker(B4)

 \ {0}.
By Equation (6.7) and (6.8),

λmin

(
ΠIm(B⊤

bd)
ΠKer(Bint)ΠIm(B⊤

bd)

)
≥ min

y ̸=0:B⊤
3 B3y⊥Ker(B4)

∥B4y∥2

∥B3y∥2 + ∥B4y∥2

= min
y ̸=0:B⊤

3 B3y⊥Ker(B4)

1

∥B3y∥2 / ∥B4y∥2 + 1
.

122 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

It suffices to show ∥B3y∥2

∥B4y∥2
= O(r).

Without loss of generality, we can assume each diagonal block of B3 in Equation (6.9)
has equal dimensions c by duplicating columns in B⊤

bd (which does not change its image).

B⊤
3 B3 = diag(J , . . . ,J)

def
= cΠ

is a multiple of projection matrix where J is the all-one matrix in dimensions c×c. Since
B⊤

3 B3y ⊥ Ker(B4), we know B⊤
3 B3y = cΠy ∈ Im(B⊤

4). Since Π is an orthogonal pro-

jection, we have ∥Πy∥ ≤
∥∥∥ΠIm(B⊤

4)y
∥∥∥. Note B⊤

4 B4 can be treated as a graph Laplacian

matrix. By the eigenvalue bound in Theorem 6.7.13,

∥B4y∥2 ≥ Ω(r−1)
∥∥∥ΠIm(B⊤

4)y
∥∥∥2 ≥ Ω(r−1) ∥Πy∥2 = Ω(r−1) · 1

c
∥B3y∥2 .

Therefore,

∥B3y∥2

∥B4y∥2
= O(r).

Combining all the lemmas and claims above, we prove Lemma 6.8.6.

6.8.2 Proof of Lemma 6.5.9

Given a vector b, we approximate Πup
1 b by the following steps: (1) compute

b1 = ΠIm(∂2(:,F))b; (2) compute b2 = ∂⊤
2 (C, :)ΠKer(∂⊤

2 (F,:))b; (3) approximately solve

Sc(Ldown
2)Cb3 = b2 via Preconditioned Conjugate Gradient and get an approximate so-

lution b̃3 up to error δ ≤ ϵ

∥Lup
1 ∥

; (4) compute b4 = ΠKer(∂⊤
2 (F,:))∂2(:, C)b̃3; (5) compute

b5 = b1 + b4. Let Π̃
up
1 be the above operator so that b5 = Π̃up

1 b.

Claim 6.8.10. Π̃up
1 b is in the image of Lup

1 .

Proof. By Lemma 6.8.1, the image of Lup
1 can be decomposed as a direct sum of two

orthogonal subspaces: Im(∂2(:, F)) and Im(ΠKer(∂⊤
2 (F,:))∂2(:, C)). Note Π̃up

1 b = b1 + b4,

where b1 ∈ Im(∂2(:, F)) and b4 ∈ Im(ΠKer(∂⊤
2 (F,:))∂2(:, C)). So, Π̃up

1 b ∈ Im(Lup
1).

We bound the error of Π̃up
1 b:∥∥∥Π̃up

1 b −Πup
1 b
∥∥∥ =

∥∥∥ΠKer(∂⊤
2 (F,:))∂2(:, C)

(
(Sc(Ldown

2)C)
† − S †) ∂⊤

2 (C, :)ΠKer(∂⊤
2 (F,:))b

∥∥∥
≤ δ

∥∥∥∂⊤
2 (C, :)ΠKer(∂⊤

2 (F,:))b
∥∥∥∥∥∥∂⊤

2 (C, :)ΠKer(∂⊤
2 (F,:))

∥∥∥
≤ δλmax(L

up
1) ∥Πup

1 b∥
≤ ϵ ∥Πup

1 b∥ , by the setting of δ

Finally, we bound the runtime of our approximate projection algorithm. The proof
is similar to that of Lemma 6.5.8. By Theorem 6.3.4 and Lemma 6.8.5, the number of
Preconditioned Conjugate Gradient (PCG) iterations is

Õ
(
κ(Sc(Ldown

2)C , ∂
⊤
2 (C, :)∂2(:, C))1/2

)
= Õ(r1/2).

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 123

In each PCG iteration, we solve a system in ∂⊤
2 (C, :)∂2(:, C) and multiply Sc(Ldown

2)C
with O(1) vectors. Recall

Sc(Ldown
2)C = ∂⊤

2 (C, :)ΠKer(∂⊤
2 (F,:))∂2(:, C).

In our preprocessing, we compute a Cholesky factorization of ∂⊤
2 (F, :)ΠKer(∂⊤

2 (F,:))∂2(:, F)

in time O(nr) (by the proof of Claim 6.8.4); then, we can multiply Sc(Ldown
2)C onto

a vector in time O(nr1/3). Similarly, we solve a system in ∂⊤
2 (C, :)∂2(:, C) by nested

dissection. By our construction, C has O(r2/3 · n
r
) = O(nr−1/3) triangles. The Cholesky

factorization runs in time O(n2r−2/3), and each system solve runs in time O(n4/3r−4/9).
So, the runtime per PCG iteration is

O
(
nr1/3 + n4/3r−4/9

)
.

Therefore, the total time is

Õ
(
r1/2

(
nr1/3 + n4/3r−4/9

)
+ nr + n2r−2/3

)
= Õ

(
nr + n4/3r5/18 + n2r−2/3

)
.

We finish the proof of Lemma 6.5.9.

6.9 Proof of the Main Theorem

Given all the four operators in Lemma 6.5.2, 6.5.3, 6.5.4, and 6.5.9, we prove the following
main theorem.

Theorem 6.9.1 (Restatement of Theorem 6.4.1). Let K be a pure 3-complex embedded
in R3 consisting of n stable simplexes and with a known r-hollowing. Let L1 be the 1-
Laplacian operator of K, and let Π1 be the orthogonal projection matrix onto the image
of L1. For any vector b and ϵ > 0, we can find a solution x̃ such that ∥L1x̃ −Π1b∥2 ≤
ϵ ∥Π1b∥2 in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3

)
.

Proof. Let κ be the maximum of κ(Ldown
1) and κ(Lup

1). Let δ > 0 be a parameter to be

determined later. Let Π̃down
1 = Π̃down

1 (δ), Π̃up
1 = Π̃up

1 (δ) be defined in Lemma 6.5.2 and
6.5.9, and let Z down

1 be the operator in Lemma 6.5.3 with no error and Z up
1 in Lemma

6.5.4 with error δ. Let

b̃
up def

= Π̃up
1 b, b̃

down def
= Π̃down

1 b,

x̃ up def
= Z up

1 b̃
up
, x̃ down def

= Z down
1 b̃

down
,

x̃
def
= Π̃up

1 x̃ up + Π̃down
1 x̃ down.

Then,

∥L1x̃ −Π1b∥2
≤
∥∥∥Lup

1 Π̃up
1 x̃ up − b̃

up
∥∥∥
2
+
∥∥∥Ldown

1 Π̃down
1 x̃ down − b̃

down
∥∥∥
2
+
∥∥∥b̃up

+ b̃
down
−Π1b

∥∥∥
2
.

We will upper bound the three terms on the right-hand side separately.

124 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

• For the first term,∥∥∥Lup
1 Π̃up

1 x̃ up − b̃
up
∥∥∥
2
≤
∥∥∥Lup

1 Π̃up
1 x̃ up − Lup

1 Πup
1 x̃ up

∥∥∥
2
+
∥∥∥Lup

1 x̃ up − b̃
up
∥∥∥
2

≤
∥∥∥Lup

1 Π̃up
1 x̃ up − Lup

1 Πup
1 x̃ up

∥∥∥
2
+ δ

∥∥∥b̃up
∥∥∥ , by Lemma 6.5.4

By Lemma 6.5.9,∥∥∥Lup
1 Π̃up

1 x̃ up − Lup
1 Πup

1 x̃ up
∥∥∥
2
≤ ∥Lup

1 ∥2
∥∥∥(Π̃up

1 −Πup
1)Πup

1 x̃ up
∥∥∥
2

≤ δ ∥Lup
1 ∥2 ∥Π

up
1 x̃ up∥2 .

Let y
def
= (Lup

1)†b̃
up
. By Lemma 6.5.4,

∥Πup
1 x̃ up − y∥2 ≤

∥∥(Lup
1)†
∥∥
2

∥∥∥Lup
1 Πup

1 x̃ up − b̃
up
∥∥∥
2
≤ δ

∥∥(Lup
1)†
∥∥
2

∥∥∥b̃up
∥∥∥
2
.

By the triangle inequality,

∥Πup
1 x̃ up∥2 ≤ ∥y∥2 + δ

∥∥(Lup
1)†
∥∥
2

∥∥∥b̃up
∥∥∥
2
≤ (1 + δ)

∥∥(Lup
1)†
∥∥
2

∥∥∥b̃up
∥∥∥
2
.

So, ∥∥∥Lup
1 Π̃up

1 x̃ up − Lup
1 Πup

1 x̃ up
∥∥∥
2
≤ δ(1 + δ)κ

∥∥∥b̃up
∥∥∥
2
,

and ∥∥∥Lup
1 Π̃up

1 x̃ up − b̃
up
∥∥∥
2
≤ 3δκ

∥∥∥b̃up
∥∥∥
2
.

• For the second term, the operator Z down
1 has no error, which means Ldown

1 x̃ down =

b̃
down

. Then,∥∥∥Ldown
1 Π̃down

1 x̃ down − b̃
down

∥∥∥
2
=
∥∥∥Ldown

1 Π̃down
1 x̃ down − Ldown

1 x̃ down
∥∥∥
2

≤ δ(1 + δ)κ
∥∥∥b̃down

∥∥∥
2
.

• For the third term,∥∥∥b̃up
+ b̃

down
−Π1b

∥∥∥2
2
=
∥∥∥(Π̃up −Πup)b

∥∥∥2
2
+
∥∥∥(Π̃down −Πdown)b

∥∥∥2
2

≤ δ2
(
∥Πupb∥22 +

∥∥Πdownb
∥∥2
2

)
by Lemma 6.5.2, 6.5.9, Fact 2.3.6

= δ2 ∥Π1b∥22 .

Combining all the above inequalities,

∥L1x̃ −Π1b∥2 ≤ 3δκ
∥∥∥b̃up

∥∥∥
2
+ 2δκ

∥∥∥b̃down
∥∥∥
2
+ δ ∥Π1b∥2

≤ 3δκ(1 + δ) ∥Πup
1 b∥2 + 2δκ(1 + δ)

∥∥Πdown
1 b

∥∥
2
+ δ ∥Π1b∥2

≤ 11δκ ∥Π1b∥2 .

Choosing δ ≤ ϵ
11κ

, we have

∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 .

The runtime bound follows Lemma 6.5.2, 6.5.3, 6.5.4, and 6.5.9.

6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes 125

6.10 A Union of Pure 3-Complexes

In this section, we consider a union U of h pure 3-complex chunks K1, . . . ,Kh that are
composed of stable simplexes, and these chunks are glued together by identifying certain
subsets of their exterior simplexes. Let k be the number of simplexes shared by more
than one chunk. We remark that U may not be embeddable in R3 and the first and
second Betti numbers of U are no longer zero. This makes designing efficient solvers
for 1-Laplacian systems of U much harder. Edelsbrunner and Parsa [EP14] showed that
computing the first Betti number of a simplicial complex linearly embedded in R4 with m
simplexes is as hard as computing the rank of a 0-1 matrix with Θ(m) non-zeros; Ding,
Kyng, Probst Gutenberg, and Zhang [Din+22] showed that (approximately) solving 1-
Laplacian systems for simplicial complexes in R4 is as hard as (approximately) solving
general sparse systems of linear equations.

We design a 1-Laplacian solver for U whose runtime is comparable to that of the
1-Laplacian solver for a single pure 3-complex when both h and k are small and prove
Theorem 6.4.2. The approximate down-projection operator for in Lemma 6.5.2 and the
approximate solver for systems in the down-Laplacian in Lemma 6.5.3 hold for any sim-
plicial complexes. Thus, it suffices to generalize the approximate up-projection operator
in Lemma 6.5.9 and the approximate solver for systems in the up-Laplacian in Lemma
6.5.4 from a single chunk to a union of chunks.

Lemma 6.10.1 (Up-Laplacian Solver). Let U be a union of pure 3-complexes glued to-
gether by identifying certain subsets of their exterior simplexes. Each 3-complex chunk is
embedded in R3, comprises ni stable simplexes, and has a known Θ(n

3/5
i)-hollowing. For

any b ∈ Im(Lup
1) and ϵ > 0, we can compute an x̃ such that ∥Lup

1 x̃ − b∥2 ≤ ϵ ∥b∥2 in

time Õ
(
n8/5 + n3/10k2 + k3

)
where n is the number of simplexes in U and k is the number

of simplexes shared by more than one chunk.

Lemma 6.10.2 (Up-Projection Operator). Let U be a 3-complex satisfying the conditions

in Lemma 6.10.2. For any ϵ > 0, there exists an operator Π̃up
1 such that

∀b,
∥∥∥Π̃up

1 b −Πup
1 b
∥∥∥
2
≤ ϵ ∥Πup

1 b∥2 .

In addition, Π̃up
1 b can be computed in time Õ

(
n8/5 + n3/10k2 + k3

)
, where n is the number

of exterior simplexes of U and k is the number of simplexes shared by more than one
chunk.

Our approaches align with those for a single chunk. We partition the simplexes of K
into F ∪ C, then deal with the “F” part and the Schur complement separately. Given
the definition of r-hollowing, the exterior simplexes of each chunk Ki must belong to the
boundary of some region. We let C be the union of the hollowing boundary of each chunk
and let F be the remaining simplexes. Then, F is a union of disjoint subcomplexes,
each embedded in R3 and can be handled by Nested Dissection. We precondition the
Schur complement by the union of the hollowing boundaries. However, systems in this
preconditioner cannot be approximately solved Nested Dissection directly since it may
not allow an embedding in R3. We will need a slightly more careful treatment.

Proof of Lemma 6.10.1. We let C be the union of the hollowing boundary edges in
each chunk and let F be the union of the hollowing interior edges. Suppose U has
h pure 3-complex chunks. By our definition of r-hollowing, we can write Lup

1 [F, F] =

126 6. 1-Laplacian Solver for Well-Shaped Simplicial Complexes

diag(Lup
1 [F1, F1], . . . ,L

up
1 [Fh, Fh]) where Fi contains all the hollowing interior edges in the

ith chunk. Let ri = n
3/5
i be the hollowing parameter for the ith chunk. By Lemma 6.5.7,

with a pre-processing time

O

(
h∑

i=1

niri

)
= O

(
h∑

i=1

n
8/5
i

)
= O

(
n8/5

)
,

for any b ∈ Im(Lup
1 [F, F]), we can find x such that Lup

1 [F, F]x = b in time

O

(
h∑

i=1

nir
1/3
i

)
= O

(
h∑

i=1

n
6/5
i

)
= O

(
n6/5

)
.

To solve the system in the Schur complement Sc[Lup
1]C , we precondition it by the

union of the hollowing boundaries of each chunk, denoted by TU . By Claim 6.7.7 and
Lemma 6.7.8, the relative condition number is O(maxi n

3/5
i). Let C1 ⊂ C contain the

edges shared by more than one chunk and C2 = C\C1. Then, the submatrix Lup
1,TU [C2, C2]

is a block diagonal matrix where each block corresponds to a chunk. We solve Lup
1,TU by

Lemma 6.5.5: We solve a system in Lup
1,TU [C2, C2] by Nested Dissection and solve the Schur

complement onto C1 by directly inverting the Schur complement. With a pre-processing
time

O

(
h∑

i=1

(
ni

ri
· r2/3i

)2

+ k3

)
= O

(
h∑

i=1

n
8/5
i + k3

)
= O(n8/5 + k3),

we can solve a system in Lup
1,TU in time

O

(
h∑

i=1

(
ni

ri
· r2/3i

)4/3

+ k2

)
= O

(
h∑

i=1

n
16/15
i + k2

)
= O(n16/15 + k2).

Therefore, the total runtime of approximately solving a system in Lup
1 is

Õ
(
n8/5 + n3/10k2 + k3

)
.

We can prove Lemma 6.10.2 by a similar argument.

Bibliography

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. “Network Flows”. In: (1993).

[AW21] J. Alman and V. V. Williams. “A refined laser method and faster matrix
multiplication”. In: Proceedings of the 2021 ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). SIAM. 2021, pp. 522–539.

[Axe85] O. Axelsson. “A survey of preconditioned iterative methods for linear sys-
tems of algebraic equations”. In: BIT Numerical Mathematics 25.1 (1985),
pp. 165–187.

[AY10] N. Alon and R. Yuster. “Solving linear systems through nested dissection”.
In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Sci-
ence. IEEE. 2010, pp. 225–234.

[BHV08a] E. G. Boman, B. Hendrickson, and S. Vavasis. “Solving elliptic finite element
systems in near-linear time with support preconditioners”. In: SIAM Journal
on Numerical Analysis 46.6 (2008), pp. 3264–3284.

[BHV08b] E. G. Boman, B. Hendrickson, and S. Vavasis. “Solving elliptic finite element
systems in near-linear time with support preconditioners”. In: SIAM Journal
on Numerical Analysis 46.6 (2008), pp. 3264–3284.

[BKV09] C. Barnhart, N. Krishnan, and P. H. Vance. “Multicommodity Flow Prob-
lems”. en. In: Encyclopedia of Optimization. Ed. by C. A. Floudas and P. M.
Pardalos. Boston, MA: Springer US, 2009, pp. 2354–2362. isbn: 978-0-387-
74759-0.

[Bla+22] M. Black, W. Maxwell, A. Nayyeri, and E. Winkelman. “Computational
Topology in a Collapsing Universe: Laplacians, Homology, Cohomology”.
In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA). SIAM. 2022, pp. 226–251.

[BN22] M. Black and A. Nayyeri. “Hodge Decomposition and General Laplacian
Solvers for Embedded Simplicial Complexes”. In: 49th International Collo-
quium on Automata, Languages, and Programming (ICALP 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik. 2022.

[Bro+17] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst.
“Geometric deep learning: going beyond euclidean data”. In: IEEE Signal
Processing Magazine 34.4 (2017), pp. 18–42.

[BS20] S. Barbarossa and S. Sardellitti. “Topological signal processing over sim-
plicial complexes”. In: IEEE Transactions on Signal Processing 68 (2020),
pp. 2992–3007.

127

128 Bibliography

[BV21] M. Bafna and N. Vyas. “Optimal fine-grained hardness of approximation
of linear equations”. In: 48th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2021). Ed. by N. Bansal, E. Merelli,
and J. Worrell. Vol. 198. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik, 2021, 20:1–20:19. isbn: 978-3-95977-195-5.

[Car09] G. Carlsson. “Topology and Data”. In: Bulletin of the American Mathemat-
ical Society 46.2 (2009), pp. 255–308.

[Cha+16] F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The Structure and Stability
of Persistence Modules. Springer, 2016. isbn: 978-3-319-42545-0.

[Che+20] L. Chen, G. Goranci, M. Henzinger, R. Peng, and T. Saranurak. “Fast Dy-
namic Cuts, Distances and Effective Resistances via Vertex Sparsifiers”. In:
2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS). 2020, pp. 1135–1146.

[Che+22] L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S.
Sachdeva. “Maximum flow and minimum-cost flow in almost-linear time”.
In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Sci-
ence (FOCS). IEEE. 2022, pp. 612–623.

[Chi67] D. R. Chillingworth. “Collapsing three-dimensional convex polyhedra”. In:
Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 63.
Cambridge University Press. 1967, pp. 353–357.

[Chi80] D. R. Chillingworth. “Collapsing three-dimensional convex polyhedra: cor-
rection”. In: Mathematical Proceedings of the Cambridge Philosophical So-
ciety. Vol. 88. Cambridge University Press. 1980, pp. 307–310.

[Chr+11] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng.
“Electrical Flows, Laplacian Systems, and Faster Approximation of Maxi-
mum Flow in Undirected Graphs”. In: Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing. 2011, pp. 273–282.

[CLS21] M. B. Cohen, Y. T. Lee, and Z. Song. “Solving Linear Programs in the
Current Matrix Multiplication Time”. In: Journal of the ACM (JACM) 68.1
(2021), pp. 1–39.

[CMZ18] C. K. Chui, H. Mhaskar, and X. Zhuang. “Representation of functions on
big data associated with directed graphs”. In: Applied and Computational
Harmonic Analysis 44.1 (2018), pp. 165–188.

[Coh+14a] M. B. Cohen, B. T. Fasy, G. L. Miller, A. Nayyeri, R. Peng, and N. Walking-
ton. “Solving 1-laplacians in nearly linear time: Collapsing and expanding
a topological ball”. In: Proceedings of the 2014 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). SIAM. 2014, pp. 204–216.

[Coh+14b] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B. Rao,
and S. C. Xu. “Solving SDD linear systems in nearly m log1/2 n time”. In:
Proceedings of the 46th Annual ACM Symposium on Theory of Computing.
ACM. 2014, pp. 343–352.

Bibliography 129

[Coh+17a] M. B. Cohen, J. Kelner, J. Peebles, R. Peng, A. B. Rao, A. Sidford, and A.
Vladu. “Almost-linear-time algorithms for markov chains and new spectral
primitives for directed graphs”. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing. 2017, pp. 410–419.

[Coh+17b] M. B. Cohen, J. Kelner, J. Peebles, R. Peng, A. B. Rao, A. Sidford, and A.
Vladu. “Almost-linear-time Algorithms for Markov Chains and New Spec-
tral Primitives for Directed Graphs”. In: Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing. STOC 2017. Montreal,
Canada: ACM, 2017, pp. 410–419. isbn: 978-1-4503-4528-6.

[Coh+18] M. B. Cohen, J. Kelner, R. Kyng, J. Peebles, R. Peng, A. B. Rao, and A.
Sidford. “Solving directed Laplacian systems in nearly-linear time through
sparse LU factorizations”. In: 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS). IEEE. 2018, pp. 898–909.

[DDH07] J. Demmel, I. Dumitriu, and O. Holtz. “Fast Linear Algebra Is Stable”. In:
Numerische Mathematik 108.1 (2007), pp. 59–91.

[Din+22] M. Ding, R. Kyng, M. P. Gutenberg, and P. Zhang. “Hardness results
for laplacians of simplicial complexes via sparse-linear equation complete
gadgets”. In: 49th International Colloquium on Automata, Languages,
and Programming (ICALP 2022). Ed. by M. Bojańczyk, E. Merelli, and
D. P. Woodruff. Vol. 229. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022, 53:1–53:19. isbn: 978-3-95977-235-8.

[Din70] E. A. Dinic. “Algorithm for Solution of a Problem of Maximum Flow in
Networks with Power Estimation”. In: Soviet Math. Doklady. Vol. 11. 1970,
pp. 1277–1280.

[DKM09] A. Duval, C. Klivans, and J. Martin. “Simplicial matrix-tree theorems”. In:
Transactions of the American Mathematical Society 361.11 (2009), pp. 6073–
6114.

[DKM15] A. M. Duval, C. J. Klivans, and J. L. Martin. “Cuts and flows of cell com-
plexes”. In: Journal of Algebraic Combinatorics 41.4 (2015), pp. 969–999.

[DKT08] M. Desbrun, E. Kanso, and Y. Tong. “Discrete differential forms for com-
putational modeling”. In: Discrete differential geometry. Springer, 2008,
pp. 287–324.

[DKZ22] M. Ding, R. Kyng, and P. Zhang. “Two-Commodity Flow Is Equivalent to
Linear Programming Under Nearly-Linear Time Reductions”. In: 49th In-
ternational Colloquium on Automata, Languages, and Programming (ICALP
2022). Ed. by M. Bojańczyk, E. Merelli, and D. P. Woodruff. Vol. 229. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 54:1–54:19. isbn:
978-3-95977-235-8.

[DR80] D. P. Dobkin and S. P. Reiss. “The complexity of linear programming”. In:
Theoretical Computer Science 11.1 (1980), pp. 1–18.

[DS07] S. I. Daitch and D. A. Spielman. “Support-Graph Preconditioners for
2-Dimensional Trusses”. In: CoRR abs/cs/0703119 (2007). arXiv: cs /

0703119.

https://arxiv.org/abs/cs/0703119
https://arxiv.org/abs/cs/0703119

130 Bibliography

[DS08] S. I. Daitch and D. A. Spielman. “Faster approximate lossy general-
ized flow via interior point algorithms”. In: Proceedings of the 40th an-
nual ACM symposium on Theory of computing. STOC ’08. Available at
http://arxiv.org/abs/0803.0988. Victoria, British Columbia, Canada: ACM,
2008, pp. 451–460. isbn: 978-1-60558-047-0.

[DW02] X. Dong and M. L. Wachs. “Combinatorial Laplacian of the matching com-
plex”. In: the electronic journal of combinatorics (2002), R17–R17.

[DZ23a] J. van Den Brand and D. J. Zhang. “Faster high accuracy multi-commodity
flow from single-commodity techniques”. In: 2023 IEEE 64th Annual Sym-
posium on Foundations of Computer Science (FOCS). IEEE. 2023, pp. 493–
502.

[DZ23b] M. Ding and P. Zhang. “Efficient 1-Laplacian Solvers for Well-Shaped Sim-
plicial Complexes: Beyond Betti Numbers and Collapsing Sequences”. In:
31st Annual European Symposium on Algorithms (ESA 2023). Ed. by I. L.
Gørtz, M. Farach-Colton, S. J. Puglisi, and G. Herman. Vol. 274. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 41:1–41:19. isbn:
978-3-95977-295-2.

[Eck44] B. Eckmann. “Harmonische Funktionen Und Randwertaufgaben in Einem
Komplex”. In: Commentarii Mathematici Helvetici 17.1 (1944), pp. 240–
255. issn: 1420-8946.

[EH10] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
American Mathematical Soc., 2010.

[EP14] H. Edelsbrunner and S. Parsa. “On the computational complexity of Betti
numbers: reductions from matrix rank”. In: Proceedings of the twenty-fifth
annual ACM-SIAM symposium on discrete algorithms. SIAM. 2014, pp. 152–
160.

[ET75] S. Even and R. E. Tarjan. “Network Flow and Testing Graph Connectivity”.
In: SIAM journal on computing 4.4 (1975), pp. 507–518.

[Eva76] J. R. Evans. “A Combinatorial Equivalence between A Class of Multicom-
modity Flow Problems and the Capacitated Transportation Problem”. en.
In: Mathematical Programming 10.1 (1976), pp. 401–404. issn: 1436-4646.

[Eva78] J. R. Evans. “The Simplex Method for Integral Multicommodity Networks”.
en. In: Naval Research Logistics Quarterly 25.1 (1978), pp. 31–37. issn:
00281441, 19319193.

[FF56] L. R. Ford and D. R. Fulkerson. “Maximal Flow through a Network”. In:
Canadian journal of Mathematics 8 (1956), pp. 399–404.

[Fle00] L. K. Fleischer. “Approximating Fractional Multicommodity Flow Indepen-
dent of the Number of Commodities”. In: SIAM Journal on Discrete Math-
ematics 13.4 (2000), pp. 505–520. issn: 0895-4801.

[Fri96] J. Friedman. “Computing Betti numbers via combinatorial Laplacians”. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of Com-
puting. 1996, pp. 386–391.

Bibliography 131

[Fri98] J. Friedman. “Computing Betti numbers via combinatorial Laplacians”. In:
Algorithmica 21.4 (1998), pp. 331–346.

[Geo73] A. George. “Nested dissection of a regular finite element mesh”. In: SIAM
Journal on Numerical Analysis 10.2 (1973), pp. 345–363.

[Ghr08a] R. Ghrist. “Barcodes: The Persistent Topology of Data”. In: Bulletin of the
American Mathematical Society 45.1 (2008), pp. 61–75.

[Ghr08b] R. Ghrist. “Barcodes: the persistent topology of data”. In: Bulletin of the
American Mathematical Society 45.1 (2008), pp. 61–75.

[GK07] N. Garg and J. Könemann. “Faster and Simpler Algorithms for Multicom-
modity Flow and Other Fractional Packing Problems”. In: SIAM Journal
on Computing 37.2 (2007), pp. 630–652. issn: 0097-5397.

[GLP21] Y. Gao, Y. P. Liu, and R. Peng. “Fully Dynamic Electrical Flows: Sparse
Maxflow Faster Than Goldberg-Rao”. In: arXiv:2101.07233 [cs] (2021).
arXiv: 2101.07233 [cs].

[GR98] A. V. Goldberg and S. Rao. “Beyond the Flow Decomposition Barrier”. In:
Journal of the ACM 45.5 (1998), pp. 783–797. issn: 0004-5411.

[GV96] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, 1996. isbn:
978-0-8018-5414-9.

[HS+52] M. R. Hestenes, E. Stiefel, et al. Methods of conjugate gradients for solving
linear systems. Vol. 49. 1. NBS Washington, DC, 1952.

[IP01] R. Impagliazzo and R. Paturi. “On the complexity of k-SAT”. In: Journal
of Computer and System Sciences 62.2 (2001), pp. 367–375.

[Ita78] A. Itai. “Two-Commodity Flow”. In: Journal of the ACM (JACM) 25.4
(1978), pp. 596–611.

[Jia+11] X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye. “Statistical ranking and combina-
torial Hodge theory”. In: Mathematical Programming 127.1 (2011), pp. 203–
244.

[Jia+21] S. Jiang, Z. Song, O. Weinstein, and H. Zhang. “A faster algorithm for
solving general LPs”. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing. 2021, pp. 823–832.

[JS21] A. Jambulapati and A. Sidford. “Ultrasparse ultrasparsifiers and faster lapla-
cian system solvers”. In: Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM. 2021, pp. 540–559.

[Kar84] N. Karmarkar. “A New Polynomial-Time Algorithm for Linear Program-
ming”. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory
of Computing. 1984, pp. 302–311.

[Kel+13] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. “A Simple, Combi-
natorial Algorithm for Solving SDD Systems in Nearly-Linear Time”. In:
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Com-
puting. 2013, pp. 911–920.

https://arxiv.org/abs/2101.07233

132 Bibliography

[Kel+14] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. “An Almost-Linear-
Time Algorithm for Approximate Max Flow in Undirected Graphs, and Its
Multicommodity Generalizations”. In: Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2014, pp. 217–
226.

[Ken78] J. L. Kennington. “A Survey of Linear Cost Multicommodity Network
Flows”. In: Operations Research 26.2 (1978), pp. 209–236. issn: 0030-364X.

[Kha80a] L. G. Khachiyan. “Polynomial algorithms in linear programming”. In: USSR
Computational Mathematics and Mathematical Physics 20.1 (1980), pp. 53–
72.

[Kha80b] L. G. Khachiyan. “Polynomial Algorithms in Linear Programming”. In:
USSR Computational Mathematics and Mathematical Physics 20.1 (1980),
pp. 53–72.

[KLS20] T. Kathuria, Y. P. Liu, and A. Sidford. “Unit Capacity Maxflow in Al-
most m4/3 Time”. In: 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 2020, pp. 119–130.

[KMP10] I. Koutis, G. L. Miller, and R. Peng. “Approaching Optimality for Solv-
ing SDD Linear Systems”. In: Proceedings of the 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science. FOCS ’10. USA: IEEE
Computer Society, 2010, pp. 235–244. isbn: 978-0-7695-4244-7.

[KMP11] I. Koutis, G. L. Miller, and R. Peng. “A Nearly-m log n Time Solver
for SDD Linear Systems”. In: Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science. FOCS ’11. Available at
http://arxiv.org/abs/1102.4842. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 590–598. isbn: 978-0-7695-4571-4.

[KMT11] I. Koutis, G. L. Miller, and D. Tolliver. “Combinatorial preconditioners and
multilevel solvers for problems in computer vision and image processing”. In:
Computer Vision and Image Understanding 115.12 (2011), pp. 1638–1646.

[KS16] R. Kyng and S. Sachdeva. “Approximate gaussian elimination for laplacians-
fast, sparse, and simple”. In: Foundations of Computer Science (FOCS),
2016 IEEE 57th Annual Symposium on. IEEE. 2016, pp. 573–582.

[KWZ20] R. Kyng, D. Wang, and P. Zhang. “Packing LPs Are Hard to Solve Accu-
rately, Assuming Linear Equations Are Hard”. In: Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2020,
pp. 279–296.

[Kyn+16] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman. “Sparsified
Cholesky and Multigrid Solvers for Connection Laplacians”. In: Proceed-
ings of the Forty-eighth Annual ACM Symposium on Theory of Computing.
STOC ’16. Cambridge, MA, USA: ACM, 2016, pp. 842–850. isbn: 978-1-
4503-4132-5.

[Kyn+18] R. Kyng, R. Peng, R. Schwieterman, and P. Zhang. “Incomplete nested
dissection”. In: Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing. 2018, pp. 404–417.

Bibliography 133

[Kyn+19] R. Kyng, R. Peng, S. Sachdeva, and D. Wang. “Flows in almost linear
time via adaptive preconditioning”. In: Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing. STOC 2019. Phoenix,
AZ, USA: Association for Computing Machinery, 2019, pp. 902–913. isbn:
9781450367059.

[KZ17] R. Kyng and P. Zhang. “Hardness Results for Structured Linear Systems”.
In: SIAM Journal on Computing 49.4 (2017), FOCS17–280.

[Lee+19] H. Lee, M. K. Chung, H. Choi, H. Kang, S. Ha, Y. K. Kim, and D. S. Lee.
“Harmonic holes as the submodules of brain network and network dissim-
ilarity”. In: Computational Topology in Image Context: 7th International
Workshop, CTIC 2019, Málaga, Spain, January 24-25, 2019, Proceedings 7.
Springer. 2019, pp. 110–122.

[Lei+95] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas.
“Fast Approximation Algorithms for Multicommodity Flow Problems”. en.
In: Journal of Computer and System Sciences 50.2 (1995), pp. 228–243. issn:
0022-0000.

[Lim20] L.-H. Lim. “Hodge laplacians on graphs”. In: Siam Review 62.3 (2020),
pp. 685–715.

[LRS13] Y. T. Lee, S. Rao, and N. Srivastava. “A New Approach to Computing
Maximum Flows Using Electrical Flows”. In: Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing. 2013, pp. 755–764.

[LRT79] R. J. Lipton, D. J. Rose, and R. E. Tarjan. “Generalized nested dissection”.
In: SIAM journal on numerical analysis 16.2 (1979), pp. 346–358.

[LS13] Y. T. Lee and A. Sidford. “Efficient accelerated coordinate descent methods
and faster algorithms for solving linear systems”. In: 2013 ieee 54th annual
symposium on foundations of computer science. IEEE. 2013, pp. 147–156.

[LS14] Y. T. Lee and A. Sidford. “Path Finding Methods for Linear Programming:
Solving Linear Programs in Õ(

√
rank) Iterations and Faster Algorithms for

Maximum Flow”. In: Foundations of Computer Science (FOCS), 2014 IEEE
55th Annual Symposium on. Available at http://arxiv.org/abs/1312.6677
and http://arxiv.org/abs/1312.6713. IEEE. 2014, pp. 424–433.

[LS20] Y. P. Liu and A. Sidford. “Faster Energy Maximization for Faster Maximum
Flow”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing. 2020, pp. 803–814.

[Ma+11a] W. Ma, J.-M. Morel, S. Osher, and A. Chien. “An L 1-based variational
model for Retinex theory and its application to medical images”. In: CVPR
2011. IEEE. 2011, pp. 153–160.

[Ma+11b] W. Ma, J.-M. Morel, S. Osher, and A. Chien. “An L 1-based variational
model for Retinex theory and its application to medical images”. In: CVPR
2011. IEEE. 2011, pp. 153–160.

[Mad10] A. Madry. “Faster Approximation Schemes for Fractional Multicommod-
ity Flow Problems via Dynamic Graph Algorithms”. In: Proceedings of the
Forty-Second ACM Symposium on Theory of Computing. STOC ’10. New
York, NY, USA: Association for Computing Machinery, 2010, pp. 121–130.
isbn: 978-1-4503-0050-6.

134 Bibliography

[Mad13] A. Madry. “Navigating Central Path with Electrical Flows: From Flows
to Matchings, and Back”. In: Proceedings of the 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science. FOCS ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 253–262. isbn: 978-0-7695-
5135-7.

[Mad16] A. Madry. “Computing Maximum Flow with Augmenting Electrical Flows”.
In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS). 2016, pp. 593–602.

[Mil+98] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. “Geometric sepa-
rators for finite-element meshes”. In: SIAM Journal on Scientific Computing
19.2 (1998), pp. 364–386.

[MN21] W. Maxwell and A. Nayyeri. “Generalized max-flows and min-cuts in sim-
plicial complexes”. In: arXiv preprint arXiv:2106.14116 (2021).

[Moh91] B. Mohar. “Eigenvalues, diameter, and mean distance in graphs”. In: Graphs
and combinatorics 7.1 (1991), pp. 53–64.

[MT90] G. L. Miller and W. Thurston. “Separators in two and three dimensions”.
In: Proceedings of the twenty-second annual ACM symposium on Theory of
computing. 1990, pp. 300–309.

[Mus+19] C. Musco, P. Netrapalli, A. Sidford, S. Ubaru, and D. P. Woodruff. “Spec-
trum Approximation Beyond Fast Matrix Multiplication: Algorithms and
Hardness”. In: arXiv:1704.04163 [cs, math] (2019). arXiv: 1704.04163 [cs,
math].

[Nie22] Z. Nie. “Matrix anti-concentration inequalities with applications”. In: Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Com-
puting. 2022, pp. 568–581.

[ODO13] B. Osting, J. Darbon, and S. Osher. “Statistical ranking using the l1-norm
on graphs”. In: AIMS Journal on Inverse Problems and Imaging 7.3 (2013),
pp. 907–926.

[OMV00] A. Ouorou, P. Mahey, and J.-P. Vial. “A Survey of Algorithms for Con-
vex Multicommodity Flow Problems”. In: Management Science 46.1 (2000),
pp. 126–147. issn: 0025-1909.

[Pen16] R. Peng. “Approximate undirected maximum flows in O(m polylog(n))
time”. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms. SODA ’16. Arlington, Virginia: Soci-
ety for Industrial and Applied Mathematics, 2016, pp. 1862–1867. isbn:
9781611974331.

[PS14] R. Peng and D. A. Spielman. “An efficient parallel solver for SDD linear sys-
tems”. In: Proceedings of the forty-sixth annual ACM symposium on Theory
of computing. ACM. 2014, pp. 333–342.

[PV21] R. Peng and S. Vempala. “Solving sparse linear systems faster than ma-
trix multiplication”. In: Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM. 2021, pp. 504–521.

https://arxiv.org/abs/1704.04163
https://arxiv.org/abs/1704.04163

Bibliography 135

[PW17] D. Pruša and T. Werner. “LP relaxations of some NP-hard problems are as
hard as any LP”. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2017, pp. 1372–1382.

[Ren01] J. Renegar. A Mathematical View of Interior-Point Methods in Convex Op-
timization. Society for Industrial and Applied Mathematics, 2001.

[Ren88] J. Renegar. “A Polynomial-Time Algorithm, Based on Newton’s Method, for
Linear Programming”. In: Mathematical programming 40.1 (1988), pp. 59–
93.

[Ren95] J. Renegar. “Incorporating Condition Measures into the Complexity Theory
of Linear Programming”. In: SIAM Journal on Optimization 5.3 (1995),
pp. 506–524. issn: 1052-6234.

[Sav+25] A. Savostianov, M. T. Schaub, N. Guglielmi, and F. Tudisco. “Efficient
Sparsification of Simplicial Complexes via Local Densities of States”. In:
arXiv preprint arXiv:2502.07558 (2025).

[Sch+20] M. T. Schaub, A. R. Benson, P. Horn, G. Lippner, and A. Jadbabaie. “Ran-
dom walks on simplicial complexes and the normalized hodge 1-laplacian”.
In: SIAM Review 62.2 (2020), pp. 353–391.

[She13] J. Sherman. “Nearly Maximum Flows in Nearly Linear Time”. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science. 2013,
pp. 263–269.

[She17] J. Sherman. “Area-Convexity, L∞ Regularization, and Undirected Multi-
commodity Flow”. In: Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing. 2017, pp. 452–460.

[SS08] D. A. Spielman and N. Srivastava. “Graph sparsification by effective resis-
tances”. In: Proceedings of the fortieth annual ACM symposium on Theory
of computing. 2008, pp. 563–568.

[ST04] D. A. Spielman and S.-H. Teng. “Nearly-Linear Time Algorithms for Graph
Partitioning, Graph Sparsification, and Solving Linear Systems”. In: Pro-
ceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Comput-
ing. STOC ’04. New York, NY, USA: Association for Computing Machinery,
2004, pp. 81–90. isbn: 978-1-58113-852-8.

[ST08] G. Shklarski and S. Toledo. “Rigidity in finite-element matrices: Sufficient
conditions for the rigidity of structures and substructures”. In: SIAM Jour-
nal on Matrix Analysis and Applications 30.1 (2008), pp. 7–40.

[ST14] D. A. Spielman and S.-H. Teng. “Nearly Linear Time Algorithms for Precon-
ditioning and Solving Symmetric, Diagonally Dominant Linear Systems”. In:
SIAM Journal on Matrix Analysis and Applications 35.3 (2014), pp. 835–
885.

[Str69] V. Strassen. “Gaussian elimination is not optimal”. In: Numerische mathe-
matik 13.4 (1969), pp. 354–356.

[Tan16] M. Tancer. “Recognition of collapsible complexes is NP-complete”. In: Dis-
crete & Computational Geometry 55.1 (2016), pp. 21–38.

136 Bibliography

[Ten10] S.-H. Teng. “The Laplacian paradigm: Emerging algorithms for massive
graphs”. In: Theory and Applications of Models of Computation: 7th An-
nual Conference, TAMC 2010, Prague, Czech Republic, June 7-11, 2010.
Proceedings 7. Springer. 2010, pp. 2–14.

[Ton+03a] Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun. “Discrete multiscale
vector field decomposition”. In: ACM transactions on graphics (TOG) 22.3
(2003), pp. 445–452.

[Ton+03b] Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun. “Discrete multiscale
vector field decomposition”. In: ACM transactions on graphics (TOG) 22.3
(2003), pp. 445–452.

[TX98] L. Trevisan and F. Xhafa. “The parallel complexity of positive linear pro-
gramming”. In: Parallel Processing Letters 8.04 (1998), pp. 527–533.

[Vai89] P. M. Vaidya. “Speeding-up Linear Programming Using Fast Matrix Mul-
tiplication”. In: 30th Annual Symposium on Foundations of Computer Sci-
ence. IEEE Computer Society, 1989, pp. 332–337.

[van+21] J. van den Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z. Song,
and D. Wang. “Minimum Cost Flows, MDPs, and L1-Regression in Nearly
Linear Time for Dense Instances”. In: Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing. STOC 2021. New York, NY,
USA: Association for Computing Machinery, 2021, pp. 859–869. isbn: 978-
1-4503-8053-9.

[Wan18] I.-L. Wang. “Multicommodity Network Flows: A Survey, Part I: Applications
and Formulations”. In: International Journal of Operations Research 15.4
(2018), pp. 145–153.

[Wil05] R. Williams. “A new algorithm for optimal 2-constraint satisfaction and its
implications”. In: Theoretical Computer Science 348.2-3 (2005), pp. 357–
365.

[Wil18] V. V. Williams. “On some fine-grained questions in algorithms and complex-
ity”. In: Proceedings of the international congress of mathematicians: Rio de
janeiro 2018. World Scientific. 2018, pp. 3447–3487.

[WW18] V. V. Williams and R. R. Williams. “Subcubic Equivalences Between Path,
Matrix, and Triangle Problems”. In: Journal of the ACM 65.5 (2018), 27:1–
27:38. issn: 0004-5411.

[Xu+12] Q. Xu, Q. Huang, T. Jiang, B. Yan, W. Lin, and Y. Yao. “HodgeRank on
random graphs for subjective video quality assessment”. In: IEEE Transac-
tions on Multimedia 14.3 (2012), pp. 844–857.

[YL17a] K. Ye and L.-H. Lim. “Cohomology of cryo-electron microscopy”. In: SIAM
Journal on Applied Algebra and Geometry 1.1 (2017), pp. 507–535.

[YL17b] K. Ye and L.-H. Lim. “Cohomology of cryo-electron microscopy”. In: SIAM
Journal on Applied Algebra and Geometry 1.1 (2017), pp. 507–535.

[Zom05] A. J. Zomorodian. Topology for Computing. Vol. 16. Cambridge university
press, 2005.

Appendix A

Missing Proofs of Linear Algebra
Facts

Proof of Fact 2.1.1. By the definition of image, Im(A) ⊇ Im(AA⊤). It suffices to show
Im(A) ⊆ Im(AA⊤). Let x be an arbitrary vector in Im(A). Then, x = Ay for some
y ∈ Rn. Write y = y1 + y2 such that y1 ∈ Im(A⊤) and y2 ∈ Ker(A). Let z satisfy
A⊤z = y1. Then,

AA⊤z = Ay1 = Ay = x .

Thus, x ∈ Im(AA⊤).

Proof of Fact 2.1.2. Since A ≼ B , by definition, C := B−A is PSD, i.e., for all x ∈ Rn,
we have x⊤Cx ≥ 0. Then, for any y ∈ Rm, let x = V ⊤y . Substituting this into the
quadratic form, we get:

y⊤(VCV ⊤)y = (V ⊤y)⊤C (V ⊤y) = x⊤Cx ≥ 0,

This shows that VCV ⊤ = V (B −A)V ⊤ is PSD. Consequently, VAV ⊤ ≼ VBV ⊤.

Proof of Fact 2.3.2. To minimize ∥Ax − b∥2, we compute the gradient with respect to
x and set it to zero. This gives the normalized equation:

A⊤(Ax ∗ − b) = 0.

Solving it gives x ∗ = (A⊤A)†A⊤b, thus

Ax ∗ = A(A⊤A)†A⊤b = ΠIm(A)b.

Substituting Ax ∗ = ΠIm(A)b back to the ℓ2 norm of residual gives

∥Ax ∗ − b∥22 =
∥∥(I −ΠIm(A))b

∥∥2
2
.

Proof of Fact 2.3.4. For the first equality, we have∥∥A⊤Ax −A⊤b
∥∥
(A⊤A)†

= (A⊤Ax −A⊤b)⊤(A⊤A)†(A⊤Ax −A⊤b)

= (Ax − b)⊤ΠIm(A)(Ax − b)

= (ΠIm(A)Ax −ΠIm(A)b)
⊤(ΠIm(A)Ax −ΠIm(A)b)

=
∥∥ΠIm(A)Ax −ΠIm(A)b

∥∥2
2
.

137

138 A. Missing Proofs of Linear Algebra Facts

For the second equality, we have

∥x − x ∗∥A⊤A = (x − x ∗)⊤A⊤A(x − x ∗)

= x⊤A⊤Ax − 2x⊤A⊤Ax ∗ + (x ∗)⊤A⊤Ax ∗

= x⊤A⊤Ax − 2x⊤A⊤ΠIm(A)b + b⊤Π⊤
Im(A)ΠIm(A)b

=
∥∥Ax −ΠIm(A)b

∥∥
2
.

Proof of Fact 2.3.5. We have

∥Ax − b∥22 ≤
∥∥Ax −ΠIm(A)b

∥∥2
2
+
∥∥(I −ΠIm(A))b

∥∥2
2

=
∥∥Ax −ΠIm(A)b

∥∥2
2
+ ∥Ax ∗ − b∥22 by Fact 2.3.2

≤ ϵ2
∥∥ΠIm(A)b

∥∥2
2
+ ∥Ax ∗ − b∥22 , by Definition 2.3.3

Proof of Fact 2.3.6. We start with proving the first statement. Since A is PSD, eigen-
decomposition gives A = UΛU ⊤, where U is an orthogonal matrix and Λ =
diag(λ1, . . . , λn) with λi ≥ 0. Since b ∈ Im(A) and by Eq. (2.4), we have

b = ΠIm(A)b = A1/2A†/2b.

Then we rewrite

∥AZb − b∥2 =
∥∥∥A1/2

(
A1/2ZA1/2 −ΠIm(A)

)
A†/2b

∥∥∥
2

≤
∥∥∥A1/2

(
A1/2ZA1/2 −ΠIm(A)

)
A†/2

∥∥∥
2
∥b∥2

=
∥∥∥UΛ1/2U ⊤

(
A1/2ZA1/2 −ΠIm(A)

)
UΛ−1/2U ⊤

∥∥∥
2
∥b∥2

=
∥∥∥Λ1/2U ⊤

(
A1/2ZA1/2 −ΠIm(A)

)
UΛ−1/2

∥∥∥
2
∥b∥2

since U is orthogonal

≤
∥∥∥Λ1/2

∥∥∥
2

∥∥∥Λ−1/2
∥∥∥
2

∥∥∥A1/2ZA1/2 −ΠIm(A)

∥∥∥
2
∥b∥2

=

√
λmax√
λmin

∥∥∥A1/2ZA1/2 −ΠIm(A)

∥∥∥
2
∥b∥2

≤
√

κ(A)
∥∥∥A1/2ZA1/2 −ΠIm(A)

∥∥∥
2
∥b∥2

≤ ϵ
√

κ(A) ∥b∥2 ,

where the last step follows from the assumption (1 − ϵ)A† ≼ Z ≼ (1 + ϵ)A†, and
multiplying A1/2 on both sides gives

(1− ϵ)ΠIm(A) ≼ A1/2ZA1/2 ≼ (1 + ϵ)ΠIm(A) ⇒
∥∥∥A1/2ZA1/2 −ΠIm(A)

∥∥∥
2
≤ ϵ.

To prove the second statement, again, since b ∈ Im(A), we can write b = Ax for
some x :

∥AZb − b∥2 = ∥AZAx −Ax∥2 ≤ ϵ ∥Ax∥2 .

A. Missing Proofs of Linear Algebra Facts 139

Then for any x ,
(1− ϵ) ∥Ax∥2 ≤ ∥AZAx∥2 ≤ (1 + ϵ) ∥Ax∥2 .

As a result,
(1− ϵ)A ≼ AZA ≼ (1 + ϵ)A.

Multiplying A† on both sides gives

(1− ϵ)A†AA† ≼ A†AZAA† ≼ (1 + ϵ)A†AA†.

By A†AA† = A† and A†A = AA† = ΠIm(A), we have

(1− ϵ)A† ≼ ΠIm(A)ZΠIm(A) ≼ (1 + ϵ)A†.

Proof of Fact 2.3.7. We expand the left hand side,

[
x⊤ y⊤]A [x

y

]
= x⊤A(F, F)x + 2x⊤A(F,C)y + y⊤A(C,C)y . (A.1)

Taking the derivative w.r.t. x and setting it to be 0 gives that

2A(F, F)x + 2A(F,C)y = 0.

Plugging x = −A(F, F)†A(F,C)y into Eq. (A.1),

min
x

[
x⊤ y⊤]A [x

y

]
= y⊤A(C,C)y − y⊤A(F,C)A(F, F)†A(F,C)⊤y = y⊤Sc(A)Cy .

This completes the proof.

Proof of Fact 2.3.9. We multiply the right-hand side:(
I

A[C,F]A[F, F]† I

)(
A[F, F]

Sc[A]C

)(
I A[F, F]†A[F,C]

I

)
=

(
I

A[C,F]A[F, F]† I

)(
A[F, F] A[F,C]

Sc[A]C

)
=

(
A[F, F] A[F,C]
A[C,F] A[C,F]A[F, F]†A[F,C] + Sc[A]C

)
=

(
A[F, F] A[F,C]
A[C,F] A[C,C]

)
= A.

Proof of Fact 2.3.10. By the definition of the Schur complement,

Sc[A]C = BCB
⊤
C −BCB

⊤
F

(
BFB

⊤
F

)†
BFB

⊤
C

= BC

(
I −B⊤

F

(
BFB

⊤
F

)†
BF

)
B⊤

C = BCΠKer(BF)B
⊤
C .

140 A. Missing Proofs of Linear Algebra Facts

Appendix B

Missing Proofs of Chapter 4

B.1 Reducing 2-Complex Boundary LE to Combina-

torial Laplacian LE

In this section, we formally state Theorem 1.4.5 as below and provide a proof. Recall
that we use σmin(A) to denote the smallest non-zero eigenvalue.

Theorem B.1.1. Let L1 = ∂⊤
1 ∂1 + ∂2∂

⊤
2 ∈ Rm×m be the combinatorial Laplacian of a

2-complex. Let d ∈ Zm. Suppose we can solve lea (L1,d , ϵ) in time Õ(nnz(L1)
c) where

c ≥ 1 is a constant. Then, we can solve lea (∂2,d , δ) in time Õ(nnz(∂2)
c) by choosing

ϵ < δ
σmin(L1)

1/2

σmax(∂2)2
1

∥d∥2
.

Proof. Suppose x 1 satisfies∥∥L1x 1 −ΠIm(L1)d
∥∥
2
≤ ϵ

∥∥ΠIm(L1)d
∥∥
2
.

By our assumption, we can compute x 1 in time Õ(nnz(L1)
c). We choose

f = ∂⊤
2 x 1.

We claim that f solves lea (∂2,d , δ). Since ∂1∂2 = 0, we have L†
1 = (∂⊤

1 ∂1)
† + (∂2∂

⊤
2)

†

and ΠIm(∂2)(∂
⊤
1 ∂1)

†d = 0. Then,∥∥∂2f −ΠIm(∂2)d
∥∥
2
=
∥∥x 1 − (∂2∂

⊤
2)

†d
∥∥
(∂2∂⊤

2)2

≤ σmax(∂2)
∥∥x 1 − (∂2∂

⊤
2)

†d
∥∥
∂2∂⊤

2

= σmax(∂2)
∥∥ΠIm(∂2)(x 1 − (∂2∂

⊤
2)

†d)
∥∥
∂2∂⊤

2

= σmax(∂2)
∥∥∥ΠIm(∂2)(x 1 − L†

1d)
∥∥∥
∂2∂⊤

2

= σmax(∂2)
∥∥∥x 1 − L†

1d
∥∥∥
∂2∂⊤

2

≤ σmax(∂2)
∥∥∥x 1 − L†

1d
∥∥∥
L1

≤ σmax(∂2)

σmin(L1)1/2
∥∥L1x 1 −ΠIm(L1)d

∥∥
2

141

142 B. Missing Proofs of Chapter 4

≤ σmax(∂2)

σmin(L1)1/2
ϵ
∥∥ΠIm(L1)d

∥∥
2

≤ δ

σmax(∂2)

≤ δ
∥∥ΠIm(∂2)d

∥∥
2
, by Claim 4.6.3

B.2 Connections With Interior Point Methods

We now show that in order to solve a generalized maxflow problem in a 2-complex flow
network using an Interior Point Method (IPM), it suffices to be able to apply the pseudo-
inverse of ∂2W ∂⊤

2 for diagonal positive weight matrices W (and this problem is essen-
tially equivalent to applying the pseudo-inverse of the combinatorial Laplacian of the
complex, c.f. Appendix B.1). We sketch how these pseudo-inverse problems arise when
solving a generalized maxflow using IPM, which is motivated by [Mad16]. For the more
curious readers, we recommend the book [Ren01] for a complete view of general IPM
algorithms.

Given a 2-complex flow network K with m edges and t triangles, a non-negative
capacity vector c ∈ Rt

≥0, and a demand vector γ ∈ Rm such that γ ∈ Im(∂2). The
γ-maxflow problem is formulated by the following linear programming:

max
F,f

F

s.t. ∂2f = Fγ

− c ≤ f ≤ c

(B.1)

The γ-maxflow in 2-complex flow networks is a generalization of s-t maxflow in graphs.
The first constraint encodes the conservation of flows for edges in K. And the second
constraint forces the flow on triangles to satisfy the capacity constraints.

We call F the flow value of f when ∂2f = Fγ. We assume that the optimal flow value
F ∗ is known by IPM algorithms, which can be estimated by the binary search.

The main idea of IPM is to get rid of inequality constraints by using barrier functions,
and then apply Newton’s method to a sequence of equality constrained problems. The
most widely used barrier function is the logarithmic barrier function, which in the γ-
maxflow problem gives

V (f) =
∑
∆∈[t]

− log(c(∆)− f (∆))− log(c(∆) + f (∆)).

Then for a given 0 ≤ α < 1, we define the following Barrier Problem:

min
f

V (f)

s.t. ∂2f = αF ∗γ
(B.2)

We start with zero flow, i.e., α0 = 0, and then increase αi+1 = αi + α′ gradually in each
iteration to make progress. Given a small enough α′, each iteration is composed of a
progress step and a centering step.

B. Missing Proofs of Chapter 4 143

Progress Step. We first take a progress step by making a Newton step to Problem
(B.2) at the current point f , while increasing the flow value by α′, which gives

min
δ

g⊤(f)δ +
1

2
δ⊤H(f)δ

s.t. ∂2δ = α′F ∗γ
(B.3)

where g(f) and H(f) are the gradient and Hessian of V at the current point f , respec-
tively.

Problem (B.3) has the Lagrangian

L(δ,x) = g⊤(f)δ +
1

2
δ⊤H(f)δ + x⊤(α′F ∗γ − ∂2δ).

Using the optimality condition, we have

∇δL(δ,x) = g(f) +H(f)δ − ∂⊤
2 x = 0,

which gives
δ = H−1(f)(∂⊤

2 x − g(f)).

Multiplying ∂2 in both sides and using the constraint ∂2δ = α′F ∗γ, we obtain

∂2H
−1(f)∂⊤

2 x = ∂2H
−1(f)g(f) + α′F ∗γ.

Thus, we have shown that it suffices to apply the pseudo-inverse of ∂2H
−1(f)∂⊤

2 to solve
x and δ:

x =
(
∂2H

−1(f)∂⊤
2

)†
(∂2H

−1(f)g(f) + α′F ∗γ),

δ = H−1(f)∂⊤
2

(
∂2H

−1(f)∂⊤
2

)† (
∂2H

−1(f)g(f) + α′F ∗γ
)
−H−1(f)g(f).

Centering Step. We then take a centering step by making a Newton step to Problem

(B.2) at the updated point of f̃
def
= f + δ without increasing the flow value, which gives

min
δ̃

g⊤(f̃)δ̃ +
1

2
δ̃⊤H(f̃)δ̃

s.t. ∂2δ̃ = 0

(B.4)

Similar to the progress step, it suffices to apply the pseudo-inverse of ∂2H
−1(f̃)∂⊤

2 to
solve δ̃:

δ̃ =

(
H−1(f̃)∂⊤

2

(
∂2H

−1(f̃)∂⊤
2

)†
∂2 − I

)
H−1(f̃)g(f̃).

144 B. Missing Proofs of Chapter 4

Appendix C

Missing Proofs of Chapter 6

Proof of Lemma 6.5.5. Since b ∈ Im(Lup
1), we know bF ∈ Im(Lup

1 (F, F)) and bF −
Lup

1 (F,C)x̃C ∈ Im(Lup
1 (F, F)). We can apply the solver UpLapFSolver to these

two vectors. By the statement assumption, we an write UpLapFSolver(bF) =
Lup

1 (F, F)†bF + y , where ∂2[F, :]
⊤y = 0. Then,

h = bC − Lup
1 (C,F) ·UpLapFSolver(bF) = bC − Lup

1 (C,F) · Lup
1 (F, F)†bF .

We first show that h ∈ Im(Sc(Lup
1)C) so that we can apply the solver SchurSolver to

h and obtain a vector x̃C satisfying ∥Sc(Lup
1)C x̃C − h∥2 ≤ δ ∥h∥2. Since b ∈ Im(Lup

1),

there exists x =

[
xF

xC

]
such that

[
bF

bC

]
=

[
I

Lup
1 (C,F)Lup

1 (F, F)† I

] [
Lup

1 (F, F)
Sc(Lup

1)C

] [
I Lup

1 (F, F)†Lup
1 (F,C)

I

] [
xF

xC

]
=

[
I

Lup
1 (C,F)Lup

1 (F, F)† I

] [
Lup

1 (F, F)
Sc(Lup

1)C

] [
xF + Lup

1 (F, F)†Lup
1 (F,C)xC

xC

]
=

[
I

Lup
1 (C,F)Lup

1 (F, F)† I

] [
Lup

1 (F, F)xF + Lup
1 (F,C)xC

Sc(Lup
1)CxC

]
=

[
Lup

1 (F, F)xF + Lup
1 (F,C)xC

Lup
1 (C,F)xF + Lup

1 (C,F)Lup
1 (F, F)†Lup

1 (F,C)xC + Sc(Lup
1)CxC

]
.

(C.1)

Here, the third equality holds since

Lup
1 (F, F)Lup

1 (F, F)†Lup
1 (F,C) = ΠIm(∂2[F,:])L

up
1 (F,C) = Lup

1 (F,C),

and the fourth equality holds similarly by using symmetry. Thus,

bC = Lup
1 (C,F)xF + Lup

1 (C,F)Lup
1 (F, F)† (bF − Lup

1 (F, F)xF) + Sc(Lup
1)CxC

= Lup
1 (C,F)xF + Lup

1 (C,F)Lup
1 (F, F)†bF − Lup

1 (C,F)xF + Sc(Lup
1)CxC

= Lup
1 (C,F)Lup

1 (F, F)†bF + Sc(Lup
1)CxC .

That is, h ∈ Im(Sc(Lup
1)C).

Next we look at Lup
1 x̃ . Let δ = Sc(Lup

1)C x̃C − h . We replace xF and xC in Equation

145

146 C. Missing Proofs of Chapter 6

(C.1) with x̃F and x̃C :

Lup
1 x̃ =

[
I

Lup
1 (C,F)Lup

1 (F, F)† I

] [
Lup

1 (F, F)x̃F + Lup
1 (F,C)x̃C

Sc(Lup
1)C x̃C

]
=

[
bF

Lup
1 (C,F)Lup

1 (F, F)†bF + Sc(Lup
1)C x̃C

]
=

[
bF

bC + δ

]
.

Then,

∥Lup
1 x̃ − b∥2 = ∥δ∥2 ≤ δ ∥h∥2 ≤ δ

(
∥bC∥2 +

∥∥Lup
1 (C,F)Lup

1 (F, F)†
∥∥
2
∥bF∥2

)
≤ δ

(
1 +

∥∥Lup
1 (C,F)Lup

1 (F, F)†
∥∥
2

)
∥b∥2 ≤ ϵ ∥b∥2 ,

where the last inequality is by our setting of δ.
We compute x̃ by two calls of UpLapFSolver and one call of SchurSolver and

O(1) matrix-vector multiplications and vector-vector additions. Thus, the total runtime
is O(t1(mF) + t2(mC) + the number of non-zeros in Lup

1).

Curriculum Vitae

Personal Data

Name: Ming Ding
Date of Birth: February 16, 1995
Place of Birth: Anhui, China

Citizen of: China

Education

2020 – 2025 ETH Zurich, Zurich, Switzerland
Ph.D. in Theoretical Computer Science

2017 – 2020 Shanghai Jiao Tong University, Shanghai, China
M.Sc. in Information and Communication Engineering

2015 – 2017 Ecole Centrale Paris, Paris, France
Diplôme d’Ingénieur

2013 – 2017 Shanghai Jiao Tong University, Shanghai, China
B.Sc. in Information Engineering

147

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Solving Linear Equations
	Solving Linear Programs
	Fine-Grained Complexity Analysis
	Our Results
	Organization of Thesis

	Preliminaries
	Vectors and Matrices
	Simplicial Homology
	Approximately Solving Linear Equations

	Hardness Results for Two-Commodity Flow
	Prior Works
	Our Contributions
	Problem Definitions
	Discussion of the Problem Assumptions
	Problems in Algebra Space
	Problems in Flow Space

	Main Results
	Algebra Space
	Overview
	LP(A) to LEN(A): Reducing Inequalities to Equalities
	LEN(A) to 2-LEN(A): Reducing Integer Coefficients to {0, 1, 2}
	2-LEN(A) to 1-LEN(A): Reducing Coefficients from 2 to 1
	1-LEN(A) to FHF(A): Encoding Equations as Flows

	Flow Space
	Overview
	FHF(A) to FPHF(A)
	FPHF(A) to SFF(A): Dropping Homologous Flow Constraints
	SFF(A) to 2CFF(A): Dropping Selective Flow Constraints
	2CFF(A) to 2CFR(A): Dropping Fixed Flow Constraints
	2CFR(A) to 2CF(A)

	A Unified Framework for LP Transformations
	Characterizing LP Transformations
	Unified Correctness Analysis
	Unified Error Analysis
	Examples
	Summary

	Hardness Results for Combinatorial Laplacians
	Prior Works
	Our Contributions
	Notations and Preliminaries
	Matrix Classes
	Reduction Between Linear Equations

	Main Results and Reduction Outline
	Overview of Our Proof

	Reducing DA to B2 in Feasible Case
	Reduction Algorithm
	Additional Notations
	Algorithm Runtime and Problem Size
	Relation Between Exact Solutions
	Relation Between Approximate Solutions
	Bounding the Condition Number of the New Matrix

	Reducing DA to B2 in General Case
	Warm-Up: Reweighting Infeasible Equations to Preserve Solutions
	Reduction Algorithm
	Relation Between Exact Solutions
	Relation Between Approximate Solutions
	Bounding the Condition Number of the New Matrix

	Hardness Results for More Structured Problems
	Reducing General LE to Difference-Average LE
	Reducing Difference-Average LE to 1-or-3 LE
	Reducing Average Equations
	Reducing Difference Equations

	Reducing General LP to (Simplified) 1-or-3 LP
	Reducing General LP to Scaled LP
	Reducing Scaled LP to Difference-Average LP
	Reducing Difference-Average LP to 1-or-3 LP
	Reducing 1-or-3 LP to Simplified 1-or-3 LP

	1-Laplacian Solver for Well-Shaped Simplicial Complexes
	Prior Works
	Motivations and Applications
	Notations and Preliminaries
	Main Results
	Algorithm Overview
	Down-Laplacian
	Solver for Up-Laplacian
	Projection onto the Image of Up-Laplacian

	Solver for Down-Laplacian
	Solver for Up-Laplacian
	Solver for Lg
	Solver for the Schur Complement

	Projection onto the Image of Up-Laplacian
	Preconditioning the Schur Complement
	Proof of Lemma 6.5.9

	Proof of the Main Theorem
	A Union of Pure Lg-Complexes

	Bibliography
	Missing Proofs of Linear Algebra Facts
	Missing Proofs of Chapter 4
	Reducing 2-Complex Boundary LE to Combinatorial Laplacian LE
	Connections With Interior Point Methods

	Missing Proofs of Chapter 6
	Curriculum Vitae

